Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C8CC03505A
COMMUNICATION
Journal Name
simulated solar light irradiation, the TiO
2
produced the There are no conflicts to declare.
-
+
electron (e ) and positive hole (h ) pairs after absorbing
photon. Then the electron transfer to Cu (BTC) , and the hole
transfer to the surface of TiO
3
2
. The hole can get an electron Acknowledgements
2
from 1a to return to the ground state and generate a cation
radical A. Then the formed intermediate A was added to
another 1a to yield intermediate B (Path 2), which further
transforms into intermediate C through an intermolecular
electrophilic addition and aromatization processes.
The work was supported by National Key Research and
Development Program of China (2017YFA0403103), National
Natural Science Foundation of China (21373230), and Chinese
Academy of Sciences (QYZDY-SSW-SLH013).
2
+
+
Meanwhile, the Cu in Cu
3
(BTC)
+
2
was reduced to Cu by the
2+
2
aggregated electrons. The Cu was oxidized to Cu by O , and
Notes and references
•−
•
the O
generated from O
intermediate D. Finally, the product 2a was generated from
the reductive elimination of H O of D. On the other hand,
reacted with 1a (Path 1), dioxetane
2
was reduced to O
2
. Then, the [O
+
2
H] , which was
•−
1
2
3
4
Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu,
C. Zhong, Nat. commun. 2018, 9, 187.
Y. Ding, Y. P. Chen, X. Zhang, L. Chen, Z. Dong, H. L. Jiang, H.
Xu, H. C. Zhou, J. Am. Chem. Soc. 2017, 139, 9136.
X. L. Lv, K. Wang, B. Wang, J. Su, X. Zou, Y. Xie, J. R. Li, H. C.
Zhou, J. Am. Chem. Soc. 2017, 139, 211.
Y. Yan, D. I. Kolokolov, I. da Silva, A. G. Stepanov, A. J. Blake,
A. Dailly, P. Manuel, C. C. Tang, S. Yang, M. Schroder, J. Am.
Chem. Soc. 2017, 139, 13349.
2
with H , reacted with C to produce
2
•−
when the
O
2
intermediate E was formed, leading to the generation of
benzaldehyl as another product.
Encouraged by the above results, we employed
TiO
2
@Cu
3
(BTC)
2
to catalyze Glaser coupling reaction, which
5
6
7
X. Kang, H. Liu, M. Hou, X. Sun, H. Han, T. Jiang, Z. Zhang, B.
Han, Angew. Chem. Int. Ed. 2016, 55, 1080.
X. Kang, Q. Zhu, X. Sun, J. Hu, J. Zhang, Z. Liu, B. Han, Chem.
Sci. 2016, 7, 266.
S. Kim, W. J. Dong, S. Gim, W. Sohn, J. Y. Park, C. J. Yoo, H. W.
Jang and J.-L. Lee, Nano Energy,2017, 39, 44. V. Stavila, R.
Parthasarathi, R. W.Davis, F. El Gabaly, K. L. Sale, B. A.
Simmons, S. Singh, M. D. Allendorf, ACS Catal. 2015, 6, 55.
S. Wang, Y. Gao, S. Miao, T. Liu, L. Mu, R. Li, F. Fan, C. Li, J.
Am. Chem. Soc. 2017, 139, 11771-11778
was a typical reaction for the formation of C-C bond. Cu-based
2
catalysts have been widely used for Glaser coupling reaction.
4
2
It is reported that the transformation of Cu and Cu can
+
+
2
promote the Glaser coupling reaction. However, the
5
2
+
traditional transform between Cu and Cu suffered from high
+
2
6
temperature. On the basis of the above experiments, we
verified that the Cu in TiO @Cu (BTC) can transform between
Cu and Cu under simulated solar light irradiation with O . So
we believe that the TiO @Cu (BTC) could also promote the
8
9
2
3
2
2
+
+
2
J. G. Santaclara, F. Kapteijn, J. Gascon, M. A. van der Veen,
CrystEngComm 2017, 19, 4118.
2
3
2
Glaser coupling reaction and chose phenyl acetylene as a 10 M. A. Nasalevich, M. A. van der Veen, F. Kapteijn, J. Gascon,
substrate to optimize the reaction condition. As we speculate,
the yield of 1, 4-Diphenylbut-1, 3-diyne could reach up to 90%
CrystEngComm 2014, 16, 4919.
1
1
1 D. Manvar, A. Fernandes Tde, J. L. Domingos, E. Baljinnyam,
A. Basu, E. F. Junior, P. R. Costa, N. Kaushik-Basu, Eur. J. med.
Chem. 2015, 93, 51.
2 L. J. Legoabe, A. Petzer, J. P. Petzer, Bioorg. Med. Chem. Lett.
2014, 24, 2758.
under simulated solar light irradiation with O
2
at room
temperature. And no product was found in the blank
experiments without catalysts, or without light irradiation or
without O
2
, as shown in Table S2. These results indicate that 13 M. Alvarado, A. Coelho, C. F. Masaguer, E. Ravina, J. Brea, J.
F. Padin, M. I. Loza, Bioorg. Med. Chem. Lett. 2005, 15, 3063.
the Glaser coupling reaction can proceed smoothly by the
2
+
+
14 K. Y. Koltunov, S. Walspurger, J. Sommer, Chem. Commun.
004, 1754.
2 3 2
transform of Cu and Cu in TiO @Cu (BTC) composites.
2
1
5 R. Rendy, Y. Zhang, A. McElrea, A. Gomel, D. A. Klumpp, J.
Org. Chem. 2004, 69, 2340.
Conclusion
16 K. Wang, L. G. Meng, Q. Zhang, L. Wang, Green Chem. 2016
8, 2864.
7 Y. Liu, M. Zhang, C.-H. Tung, Y. Wang, ACS Catal. 2016, 6,
389.
2
framework, and 18 G. W. Peterson, G. W. Wagner, A. Balboa, J. Mahle, T. Sewell,
,
1
In conclusion, we proposed a new strategy to synthesize novel
multiporous TiO @Cu (BTC) composites in IL by one step. The
Cu (BTC) dispersed uniformly in the TiO
TiO @Cu (BTC) composites showed excellent performance for
photooxidation of styrene to 4-aryl tetralones and Glaser
coupling reaction of phenyl acetylene with O under simulated
1
2
3
2
8
3
2
C. J. Karwachi, J. Phys. Chem. C 2009, 113, 13906.
9 Y. Zhu, J. Ciston, B. Zheng, X. Miao, C. Czarnik, Y. Pan, R.
Sougrat, Z. Lai, C. E. Hsiung, K. Yao, I. Pinnau, M. Pan, Y. Han,
Nat. Mater. 2017, 16, 532.
2
3
2
1
2
solar light irradiation. The photogenerated electrons can be
effectively transferred from the semiconductor to the
2
2
2
2
0 Y. Q. Liang, Z. D. Cui, S. L. Zhu, Z. Y. Li, X. J. Yang, Y. J. Chen, J.
M. Ma, Nanoscale 2013, 5, 10916.
1 M. Yin, C. K. Wu, Y. Lou, C. Burda, J. K. Koberstein, Y. Zhu, S.
O. Brien, J. Am. Chem. Soc. 2005, 127, 9506.
2 D. Yang, T. Wu, C. Chen, W. Guo, H. Liu, B. Han, Green Chem.
Cu
transform between Cu and Cu under simulated solar light
irradiation with O . We believe that efficient photocatalysts for
some other photooxidation reactions can also be designed on
3 2 3 2
(BTC) , and the valence states of Cu in Cu (BTC) can
2
+
+
2
2
017, 19, 311.
3 T. Oishi, T. Katayama, K. Yamaaguchi, N. Mizuno, Chem.
Eur.J. 2009, 15, 7539.
2
+
+
the basis of transformation between Cu and Cu in MOFs.
2
2
2
4 S. Chen, W. Wu, F. Tsai, Green Chem. 2009, 11, 269.
5 X. Jia, K. Yin, C. Li, J. Li, H. Bian, Green Chem. 2011, 13, 2175.
6 Oishi, K. Yamaguchi, N. Mizuno, ACS Catal. 2011, 1, 1351.
Conflicts of interest
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins