S.M. de Lima et al. / Journal of Catalysis 268 (2009) 268–281
281
Trimm [47], this is a special case where the coke formation does
References
not result in catalyst deactivation.
When SR is carried out at high temperature (1073 K), carbon
does not accumulate, and this may be due to: (1) the steam and
[
[
[
1] P.R. de la Piscina, N. Homs, Chem. Soc. Rev. 37 (2008) 2459.
2] P.D. Vaidya, A.E. Rodrigues, Ind. Eng. Chem. Res. 45 (2006) 6614.
3] A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Energy Fuels 19 (2005) 2098.
CO
2
reforming of methane reactions; (2) the reverse of the dispro-
[4] H. Song, L. Zhang, R.B. Watson, D. Braden, U.S. Ozkan, Catal. Today 129 (2007)
46.
[
3
portion reaction (Eq. 7); and/or (3) the carbon gasification reaction,
which is favored at high temperatures.
5] R.M. Navarro, M.C. Alvarez-Galvan, M.C. Sanchez-Sanchez, F. Rosa, J.L.G. Fierro,
Appl. Catal. B 55 (2004) 223.
[
[
[
6] M. Veronica, B. Graciela, A. Norma, L. Miguel, Chem. Eng. J. 138 (2008) 602.
7] A.N. Fatsikostas, X.E. Verykios, J. Catal. 225 (2004) 439.
8] A. Erdohelyi, J. Raskó, T. Kecskés, M. Tóth, M. Dömök, K. Baán, Catal. Today 116
4
. Conclusions
(
2006) 367.
[
9] V. Fierro, V. Klouz, O. Akdim, C. Mirodatos, Catal. Today 75 (2002) 141.
[
[
[
10] L.V. Mattos, F.B. Noronha, J. Power Sources 145 (2005) 10.
11] L.V. Mattos, F.B. Noronha, J. Power Sources 152 (2005) 50.
12] L.V. Mattos, F.B. Noronha, J. Catal. 233 (2005) 453.
DRIFTS, reaction testing, and TPD measurements provided the
following conclusions regarding the reaction network. With ED,
ethanol adsorbs dissociatively at low temperature to form ad-
sorbed ethoxy species and a bridging –OH group. At moderate tem-
peratures, ethoxy species diminish and acetaldehyde increases. A
[13] J.L. Bi, S.N. Hsu, C.T. Yeh, C.B. Wang, Catal. Today 129 (2007) 330.
[
[
[
14] J. Kugai, S. Velu, C. Song, Catal. Lett. 101 (2005) 255.
15] V. Fierro, O. Akidim, C. Mirodatos, Green Chem. 5 (2003) 20.
16] S.M. de Lima, I.O. da Cruz, G. Jacobs, B.H. Davis, L.V. Mattos, F.B. Noronha, J.
Catal. 257 (2008) 356.
2 4
fraction of the ethanol decomposes to H , CH , and CO, and another
fraction dehydrogenates to acetaldehyde. At higher temperatures,
acetaldehyde is converted to acetate via support bound –OH
groups. In the absence of steam, the dehydration product of ethyl-
ene is favored.
With SR, OSR, and POX, the increased coverage of –OH and lat-
tice O adatoms promotes the formation of acetate at lower temper-
atures. At higher temperatures, steam promotes the forward
[17] E.B. Pereira, N. Homs, S. Marti, J.L.G. Fierro, P.R. de la Piscina, J. Catal. 257
2008) 206.
(
[
[
18] N. Laosiripojana, S. Assabumrungrat, Appl. Catal. B 66 (2006) 29.
19] T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumurab, W-J. Shenc, S.
Imamura, Appl. Catal. A 279 (2005) 273.
[
[
[
20] J. Llorca, N. Homs, P.R. de la Piscina, J. Catal. 227 (2004) 556.
21] J. Llorca, P.R. de la Piscina, J. Sales, N. Homs, Chem. Commun. (2001) 641.
22] W. Cai, F. Wanga, E. Zhan, A.C. Van Veen, C. Mirodatos, W. Shen, J. Catal. 257
(2008) 96.
[
[
23] J. Kugai, V. Subramani, C. Song, M.H. Engelhard, Y.H. Chin, J. Catal. 238 (2006)
decomposition of acetate to carbonate and CH
decomposes over Co metal particles to evolve H
Replacing steam with oxygen resulted in losses in H
4
, the latter of which
and carbon.
selectivity
430.
2
24] H. Roh, A. Platon, Y. Wang, D.L. King, Catal. Lett. 110 (2006) 1.
2
[25] G. Jacobs, R.A. Keogh, B.H. Davis, J. Catal. 245 (2007) 326.
[
26] F. Romero-Sarria, J.C. Vargas, A. Roger, A. Kiennemann, Catal. Today 133 (2008)
49.
27] L.P.R. Profeti, E.A. Ticianelli, E.M. Assaf, J. Power Sources 175 (2008) 482.
as the forward decomposition was hindered; thus, higher acetalde-
hyde production was observed. In OSR, although acetaldehyde pro-
1
[
duction was inhibited by the presence of H
2
O in the feed, the H
2
[28] J. Llorca, N. Homs, J. Sales, P.R. de la Piscina, J. Catal. 209 (2002) 306.
[
[
[
29] B. Zhang, X. Tang, Y. Li, W. Cai, Y. Xu, W. Shen, Catal. Commun. 7 (2006) 367.
30] H. Wang, J.L. Ye, Y. Liu, Y.D. Lin, Y.N. Qin, Catal. Today 129 (2007) 305.
31] J.C. Vargas, S. Libs, A.C. Roger, A. Kiennemann, Catal. Today 107 (2005) 417.
selectivity was lower relative to the case of SR alone.
Regarding catalyst stability, the reaction type, feed ratios, and
temperature strongly influence the nature of the carbon deposits
that form and their impact on catalyst stability. The results suggest
that the carbon diffuses behind the particle, nucleating the growth
of carbon filaments. The filamentous carbon lifts the Co particles
from the support, but this does not directly lead to catalyst deacti-
[32] J.M. Guil, N. Homs, J. Llorca, P.R. de la Piscina, J. Phys. Chem. B 109 (2005)
10813.
[
33] A.E. Galetti, M.F. Gomez, L.A. Arrua, A.J. Marchi, M.C. Abello, Catal. Commun. 9
2008) 1201.
34] H. Wang, Y. Liu, L. Wang, Y.N. Qin, Chem. Eng. J. 145 (2008) 25.
(
[
[35] S. Cavallaro, V. Chiodo, A. Vita, S. Freni, J. Power Sources 123 (2003) 10.
[
[
36] P. Gajardo, P. Grange, B. Dalmon, J. Phys. Chem. 83 (1979) 1771.
37] F.B. Noronha, C.A. Perez, R. Frety, M. Schmal, Phys. Chem. Chem. Phys. 1 (1999)
2
vation. In cases where high H O/ethanol feed ratios are employed,
or if oxygen is included in the feed, enough of the active surfaces of
both the support and metal remains exposed and accessible to
reactants and intermediates, such that the catalyst deactivation
2861.
[38] G. Jacobs, E. Chenu, P.M. Patterson, L. Calico-Williams, D.E. Sparks, G. Thomas,
B.H. Davis, Appl. Catal. A 258 (2004) 203.
[
[
39] E.M. Cordi, J.L. Falconer, J. Catal. 162 (1996) 104.
40] L.F. de Mello, F.B. Noronha, M. Schmal, J. Catal. 220 (2003) 358.
2
rate is alleviated. On the other hand, when less of H O or no oxygen
was present, amorphous carbon tended to cover and block active
sites, leading to more significant losses in activity.
[41] A. Yee, S.J. Morrison, H. Idriss, J. Catal. 191 (2000) 30.
[
[
[
[
[
[
[
42] J. Raskó, A. Hancz, A. Erdohelyi, Appl. Catal. A 269 (2004) 13.
43] M. Mavrikakis, M.A. Barteau, J. Mol. Catal. A: Chem. 131 (1998) 135.
44] P.V. Menacherry, G.L. Haller, J. Catal. 177 (1998) 175.
45] H. Song, U.S. Ozkan, J. Catal. 261 (2009) 66.
46] M. Dömök, M. Tóth, J. Raskó, A. Erdohelyi, Appl. Catal. B 69 (2007) 262.
47] D.L. Trimm, Catal. Today 37 (1997) 233.
Acknowledgments
48] D.L. Trimm, Catal. Today 49 (1999) 49.
This work received financial support of CTENERG/FINEP-
[49] R.M. Navarro, M.A. Pena, J.L.G. Fierro, Chem. Rev. 107 (2007) 3952.
[50] B. Kitiyanan, W.E. Alvarez, J.H. Harwell, D.E. Resasco, Chem. Phys. Lett. 317
0
1.04.0525.00. CAER acknowledges the Commonwealth of Ken-
(
2000) 497.
tucky for financial support.