LETTER
Selective Oxidation of Secondary Alcohols
1025
by trap-to-trap fractionation and other products were
purified by column chromatography with silica gel as
Acknowledgment
Financial support from the National Science Council of Taiwan
(NSC 95-2113-M-006-008) is gratefully acknowledged.
stationary phase and hexane–EtOAc as mobile phase. All the
products are known and their characterizations are shown as
follows.
Compound trans-3a:2d 1H NMR (300 MHz, CDCl3): d =
3.19 (m, 1 H), 3.78 (dd, J = 12.8, 3.5 Hz, 1 H), 3.92 (d,
J = 2.1 Hz, 1 H), 4.05 (dd, J = 12.8, 2.1 Hz, 1 H), 7.30 (m, 5
H, Ph). 13C NMR (100 MHz, CDCl3): d = 55.5, 61.2, 62.5,
125.6, 128.2, 128.4, 136.7.
References and Notes
(1) (a) Woodard, S. S.; Finn, M. G.; Sharpless, K. B. J. Am.
Chem. Soc. 1991, 113, 106. (b) Finn, M. G.; Sharpless, K.
B. J. Am. Chem. Soc. 1991, 113, 113. (c) McKee, B. H.;
Kalantar, T. H.; Sharpless, K. B. J. Org. Chem. 1991, 56,
6966. (d) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.;
Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987,
109, 5765. (e) Williams, I. D.; Pedersen, S. F.; Sharpless, K.
B.; Lippard, S. J. J. Am. Chem. Soc. 1984, 106, 6430.
(f) Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yasuhiro, Y.;
Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103,
6237. (g) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc.
1980, 102, 5974.
(2) (a) Kelly, A. R.; Lurain, A. E.; Walsh, P. J. J. Am. Chem.
Soc. 2005, 127, 14668. (b) Karjalainen, J. K.; Hormi, O. E.
O.; Sherrington, D. C. Tetrahedron: Asymmetry 1998, 9,
1563. (c) Honda, T.; Mizutani, H.; Kanai, K. J. Chem. Soc.,
Perkin Trans. 1 1996, 1729. (d) Petersson, H.; Gogoll, A.;
Backvall, J.-E. J. Org. Chem. 1992, 57, 6025.
Compound syn-3b:9a 1H NMR (300 MHz, CDCl3): d = 1.31
(d, 3 H, J = 6.5 Hz), 3.09 (m, 1 H), 3.95 (d, 1 H, J = 2.1 Hz),
4.10 (m, 1 H), 7.32 (m, 5 H). 13C NMR (100 MHz, CDCl3):
d = 136.9, 128.5, 128.3, 125.7, 65.5, 64.8, 54.6, 18.7.
Compound anti-3b:9a 1H NMR (300 MHz, CDCl3): d = 1.29
(d, 3 H, J = 6.4 Hz), 3.05 (m, 1 H), 3.86 (d, 1 H, J = 2.0 Hz),
3.85 (m, 1 H), 7.30 (m, 5 H). 13C NMR (100 MHz, CDCl3):
d = 136.7, 128.4, 128.2, 125.6, 67.1, 66.4, 56.5, 20.0.
Compound 2b:9b IR (CDCl3): 1678 cm–1; 1H NMR (300
MHz, CDCl3): d = 2.40 (s, 3 H), 6.73 (d, J = 16.0 Hz, 1 H),
7.41 (m, 3 H), 7.51–7.57 (m, 3 H). 13C NMR (100 MHz,
CDCl3) d = 27.5, 127.2, 128.5, 129.1, 130.5, 134.7, 143.5,
198.2. 2c9c: IR (CDCl3): 1705 cm–1; 1H NMR (300 MHz,
CDCl3): d = 2.18 (s, 6 H). 13C NMR (100 MHz, CDCl3): d =
208.1.
Compound 2d:9d IR (CDCl3): 1709 cm–1. 1H NMR (300
MHz, CDCl3): d = 1.70 (m, 2 H), 1.83 (m, 4 H), 2.32 (m, 4
H). 13C NMR (100 MHz, CDCl3): d = 25.1, 27.2, 42.2, 211.8.
Compound 2e:9e IR (CDCl3): 1695 cm–1. 1H NMR (300
MHz, CDCl3): d = 1.23 (t, J = 7 Hz, 3 H), 2.98 (q, J = 7.0 Hz,
2 H), 7.40–7.58 (m, 3 H), 7.98 (m, 2 H). 13C NMR (100
MHz, CDCl3): d = 8.1, 31.9, 127.7, 128.3, 132.8, 137.0,
200.8.
(3) (a) Lu, L. D.-L.; Johnson, R. A.; Finn, M. G.; Sharpless, K.
B. J. Org. Chem. 1984, 49, 728. (b) Klunder, J. M.; Caron,
M.; Uchiyama, M.; Sharpless, K. B. J. Org. Chem. 1985, 50,
912.
(4) Smith, M. B.; March, J. March’s Advanced Organic
Chemistry: Reactions, Mechanisms, and Structure, 5th ed.;
Wiley-Interscience: New York, 2001, 1514–1517.
(5) (a) Gogoi, P.; Sarmah, G. K.; Konwar, D. J. Org. Chem.
2004, 69, 5153. (b) Arterbum, J. B. Tetrahedron 2001, 57,
9765. (c) De Luca, L.; Giacomelli, G.; Porcheddu, A. Org.
Lett. 2001, 3, 3041. (d) Liu, C.; Han, J.; Wang, J. Synlett
2007, 643. (e) Fung, W.-H.; Yu, W.-Y.; Che, C.-M. J. Org.
Chem. 1998, 63, 2873. (f) Krohn, K.; Vinke, I.; Adam, H. J.
Org. Chem. 1996, 61, 1467. (g) Choudary, B. M.;
Compound 2g:9f IR (CDCl3): 1735, 1665 cm–1. 1H NMR
(300 MHz, CDCl3): d = 7.52 (m, 2 H), 7.70 (m, 1 H), 8.21
(m, 2 H), 10.87 (s, 1 H). 13C NMR (100 MHz, CDCl3): d =
129.1, 131.3, 132.2, 136.3, 164.0, 185.2.
Compound 2h:9g IR (CDCl3): 1661 cm–1. 1H NMR (300
MHz, CDCl3): d = 7.46 (m, 4 H), 7.58 (m, 2 H), 7.95 (m, 4
H). 13C NMR (100 MHz, CDCl3): d = 129.2, 129.9, 133.2,
135.0, 194.7.
Durgaprasad, A.; Valli, V. L. K. Tetrahedron Lett. 1990, 31,
5785. (h) Palombi, L.; Bonadies, F.; Scettri, A.; Mincione,
E. Tetrahedron Lett. 1990, 31, 5785. (i) Yamawaki, K.;
Yoshida, T.; Nishihara, H.; Ishii, Y.; Ogawa, M. Synth.
Commun. 1986, 16, 537. (j) Masuyama, Y.; Takahashi, M.;
Kurusu, Y. Tetrahedron Lett. 1984, 25, 4417. (k) Kaneda,
K.; Kawanishi, Y.; Jitsukawa, K.; Teranishi, S. Tetrahedron
Lett. 1983, 24, 5009. (l) Bilgrien, C.; Davis, S.; Drago, R. S.
J. Am. Chem. Soc. 1987, 109, 3786. (m) Doyle, M. P.; Dow,
R. L.; Bagheri, V.; Patrie, W. J. J. Org. Chem. 1983, 48,
476. (n) Patil, M. L.; Maujan, S. R.; Borate, H. B.; Uphade,
B. S. ARKIVOC 2007, (i), 70. (o) Jain, S. L.; Sharma, V. B.;
Sain, B. Tetrahedron 2006, 62, 6841. (p) Boudreau, J.;
Doucette, M.; Ajjou, A. N. Tetrahedron 2006, 47, 1695.
(q) Ferguson, G.; Ajjou, A. N. Tetrahedron Lett. 2003, 44,
9139.
Compound 2i:9h IR (CDCl3): 1737, 1670 cm–1. 1H NMR
(300 MHz, CDCl3): d = 1.44 (t, J = 7.0 Hz, 3 H), 4.43 (q,
J = 7.0 Hz, 2 H), 7.47 (m, 2 H), 7.52 (m, 1 H), 8.03 (m, 2 H).
13C NMR (100 MHz, CDCl3): d = 14.1, 61.2, 129.3, 131.4,
132.3, 136.5, 163.9, 186.0.
Compound 2j:9i IR (CDCl3): 1666 cm–1. 1H NMR (300 MHz,
CDCl3): d = 0.98 (t, 3 H, J = 7.3 Hz), 1.40 (m, 2 H), 1.60 (m,
2 H), 3.36 (q, J = 7.3 Hz, 2 H), 7.50 (m, 2 H), 7.64 (m, 1 H),
8.35 (m, 2 H). 13C NMR (100 MHz, CDCl3): d = 13.7, 20.1,
31.3, 39.2, 128.5, 131.2, 133.4, 134.3, 161.7, 187.9.
Compound 2k:9j IR (CDCl3): 1710 cm–1. 1H NMR (300
MHz, CDCl3): d = 2.2 (s, 3 H), 2.7 (t, J = 5.5 Hz, 2 H), 3.8
(t, J = 5.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): d = 30.3,
45.6, 61.1, 208.5.
Compound 2l:9k IR (CDCl3): 1706 cm–1. 1H NMR (300
MHz, CDCl3): d = 1.20 (d, J = 5.8 Hz), 2.18 (s, 3 H), 2.58 (d,
J = 5.8 Hz, 2 H), 4.22 (m, 1 H). 13C NMR (100 MHz,
CDCl3): d = 25.9, 30.6, 51.5, 63.8, 208.9.
(6) Hill, J. G.; Rossiter, B. E.; Sharpless, K. B. J. Org. Chem.
1983, 48, 3607.
(7) The general procedure for alcohol oxidation with TiCl4/
TBHP or Ti(Oi-Pr)4/TBHP is shown as follows. To alcohol
substrate 1 (1 mmol) and 4 Å MS (0.5 g) in CHCl3, CH2Cl2,
or CDCl3 (2 mL) at r.t. was added TiCl4 or Ti(Oi-Pr)4 (0.1
mmol, 10% in CHCl3). The mixture was stirred at r.t. for 1 h.
Toluene solution of TBHP (1.7 mmol) was added into the
mixture, followed by stirring at r.t. or reflux conditions for 1
or 2 d. Low-boiling-point products 2c and 2d were purified
(8) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.
(9) (a) Kawakami, T.; Shibata, I.; Baba, A.; Matsuda, H. J. Org.
Chem. 1993, 58, 7608. (b) Murphy, J. A.; Commeureuc, A.
G. J.; Snaddon, T. N.; McGuire, T. M.; Khan, T. A.; Hisler,
K.; Dewis, M. L.; Carling, R. Org. Lett. 2005, 7, 1427.
(c) Amyes, T.; Richard, J. P. J. Am. Chem. Soc. 1992, 114,
Synlett 2008, No. 7, 1021–1026 © Thieme Stuttgart · New York