Notes and references
1 Heteracalixarene reviews: (a) B. Konig and M. H. Fonseca, Eur. J.
¨
Inorg. Chem., 2000, 2303; (b) P. Lhotak, Eur. J. Org. Chem., 2004,
1675; (c) N. Morohashi, F. Narumi, N. Iki, T. Hattori and
S. Miyano, Chem. Rev., 2006, 106, 5291; (d) H. Tsue,
K. Ishibashi and R. Tamura, in Heterocyclic Supramolecules I,
Topics in Heterocyclic Chemistry, ed. K. Matsumoto, Springer,
Heidelberg, 2008, vol. 17, pp. 73–96; (e) W. Maes and W. Dehaen,
Chem. Soc. Rev., 2008, 37, 2393; (f) M.-X. Wang, Chem. Commun.,
2008, 4541; (g) M.-X. Wang, Acc. Chem. Res., 2011, DOI: 10.1021/
ar200108c.
2 Azacalixarenes: (a) Y. Miyazaki, T. Kanbara and T. Yamamoto,
Tetrahedron Lett., 2002, 43, 7945; (b) M.-X. Wang, X.-H. Zhang
and Q.-Y. Zheng, Angew. Chem., Int. Ed., 2004, 43, 838;
(c) H.-Y. Gong, Q.-Y. Zheng, X.-H. Zhang, D.-X. Wang and
M.-X. Wang, Org. Lett., 2006, 8, 4895; (d) H. Tsue, K. Ishibashi,
S. Tokita, H. Takahashi, K. Matsui and R. Tamura, Chem.–Eur.
J., 2008, 14, 6125; (e) B. Yao, D.-X. Wang, Z.-T. Huang and
M.-X. Wang, Chem. Commun., 2009, 2899; (f) E.-X. Zhang,
D.-X. Wang, Z.-T. Huang and M.-X. Wang, J. Org. Chem.,
2009, 74, 8595.
3 Oxacalixarenes: (a) M.-X. Wang and H.-B. Yang, J. Am. Chem.
Soc., 2004, 126, 15412; (b) J. L. Katz, M. B. Feldman and
R. R. Conry, Org. Lett., 2005, 7, 91; (c) W. Maes, W. Van Rossom,
K. Van Hecke, L. Van Meervelt and W. Dehaen, Org. Lett., 2006,
8, 4161; (d) D.-X. Wang, Q.-Y. Zheng, Q.-Q. Wang and
M.-X. Wang, Angew. Chem., Int. Ed., 2008, 47, 7485; (e) W. Van
Rossom, W. Maes, L. Kishore, M. Ovaere, L. Van Meervelt and
W. Dehaen, Org. Lett., 2008, 10, 585; (f) M.-L. Ma, X.-Y. Li and
K. Wen, J. Am. Chem. Soc., 2009, 131, 8338; (g) W. Van Rossom,
M. Ovaere, L. Van Meervelt, W. Dehaen and W. Maes, Org. Lett.,
2009, 11, 1681; (h) D.-X. Wang, Q.-Q. Wang, Y. Han, Y. Wang,
Z.-T. Huang and M.-X. Wang, Chem.–Eur. J., 2010, 16, 13053;
(i) S.-Z. Hu and C.-F. Chen, Chem. Commun., 2010, 46, 4199;
(j) M. E. Alberto, G. Mazzone, N. Russo and E. Sicilia, Chem.
Commun., 2010, 46, 5894; (k) W. Van Rossom, K. Robeyns,
M. Ovaere, L. Van Meervelt, W. Dehaen and W. Maes, Org.
Lett., 2011, 13, 126.
Fig. 3 UV/Vis titration of 2c with (n-Bu)4N(HSO4) in MeCN. Inset:
À
variation of absorbance at l = 275 nm vs. equiv. of HSO4 added.
environmental systems.10 In this respect there is also a rising
interest in the supramolecular exploitation of anion–arene inter-
actions, caused by favorable interaction between anions and
neutral electron poor (het)arenes.11 Recent studies have indicated
that the p–acidic cavity of tetraoxacalix[2]arene[2]triazines is
capable of halide anion binding, both in solution and in the
solid state, due to a synergic effect of noncovalent halide–p and
lone pair–p interactions.3d,h,j As we envisioned that the p–electron
deficient cavity of the selenacalix[3]triazines could also be
capable of anion recognition, a preliminary investigation
towards their affinity for a small variety of putative anionic
guests was performed. UV/Vis titrations of host 2c with ClÀ,
AcOÀ or HCO3À in MeCN did not induce any notable spectral
changes. However, when hydrogen sulfate was titrated with
the host solution, a clear isosbestic point and a noticeable
bathochromic and hyperchromic shift were observed (Fig. 3).
The Job plot revealed a 1 : 1 (host : guest) stoichiometry (see
ESIw) and an association constant Kass Z 106 MÀ1 was
deriveÀd, pointing out the particularly high affinity of 2c for
HSO4 (Table 1). The complex could also be identified by
ESI-MS (see ESIwÀ). In addition, a weaker interaction with the
less acidic H2PO4 was also observed (Table 1). The type of
complex and the preferred binding motif (anion–arene versus
protonation) remain unknown, as solid-state evidence could
not be obtained. Additional UV/Vis titrations for
selenacalix[3]arenes 2a and 2b did not provide any firm
clarification regarding this issuÀe, as a reverse trend could be
distinguished (AcOÀ 4 HCO3 4 H2PO4À), while no inter-
action with HSO4À was observed (Table 1). The complexation
is obviously very sensitive to the substitution pattern, which
suggests two competitive mechanisms.7
4 (a) C. W. Nogueira, G. Zeni and J. B. T. Rocha, Chem. Rev., 2004,
104, 6255; (b) G. Roy and G. Mugesh, J. Am. Chem. Soc., 2005,
127, 15207; (c) J. A. Mukherjee, S. S. Zade, H. B. Singh and
R. B. Sunoj, Chem. Rev., 2010, 110, 4357.
5 (a) T. G. Back, Z. Moussa and M. Parvez, Angew. Chem., Int. Ed.,
2004, 43, 1268; (b) H. Xu, J. Gao, Y. Wang, Z. Wang, M. Smet,
W. Dehaen and X. Zhang, Chem. Commun., 2006, 796;
(c) K. P. Bhabak and G. Mugesh, Acc. Chem. Res., 2010, 43, 1408.
6 (a) G. Hua, Y. Li, A. M. Z. Slawin and J. D. Woollins, Angew.
Chem., Int. Ed., 2008, 47, 2857; (b) W. Levason, J. M. Manning,
G. Reid, M. Tuggey and M. Webster, Dalton Trans., 2009, 4569;
(c) A. Lari, R. Gleiter and F. Rominger, Eur. J. Org. Chem., 2009,
2267; (d) A. Panda, Coord. Chem. Rev., 2009, 253, 1056;
(e) J. Thomas, W. Maes, K. Robeyns, M. Ovaere, L. Van Meervelt,
M. Smet and W. Dehaen, Org. Lett., 2009, 11, 3040.
7 An upcoming study will focus on the synthetic details and
elaborate on the supramolecular and solid-state features of these
materials.
8 Heteracalix[3]arenes: (a) M. Mascal, J. L. Richardson, J. A. Blake
and W. Li, Tetrahedron Lett., 1997, 38, 7639; (b) A. Ito, Y. Ono and
K. Tanaka, J. Org. Chem., 1999, 64, 8236; (c) R. Tanaka, T. Yano,
T. Nishioka, K. Nakajo, B. K. Breedlove, K. Kimura, I. Kinoshita
and K. Isobe, Chem. Commun., 2002, 1686; (d) Y. Suzuki, T. Yanagi,
T. Kanbara and T. Yamamoto, Synlett, 2005, 263; (e) Y. Tsukahara,
M. Hirotsu, S. Hattori, Y. Usuki and I. Kinoshita, Chem. Lett., 2008,
37, 452; (f) N. Uchida, A. Taketoshi, J. Kuwabara, T. Yamamoto,
Y. Inoue, Y. Watanabe and T. Kanbara, Org. Lett., 2010, 12, 5242.
9 (a) P. Gans, A. Sabatini and A. Vacca, Talanta, 1996, 43, 1739;
co.uk.
10 J. L. Sessler, P. A. Gale and W.-S. Cho, Anion Receptor Chemistry,
RSC, Cambridge, 2006.
11 (a) P. Gamez, T. J. Mooibroek, S. J. Teat and J. Reedijk, Acc.
Chem. Res., 2007, 40, 435; (b) B. P. Hay and V. S. Bryantsev,
Chem. Commun., 2008, 2417; (c) B. L. Schottel, H. T. Chifotides
and K. R. Dunbar, Chem. Soc. Rev., 2008, 37, 68.
In summary, selenacalix[3]triazines were synthesized selectively
in a high yield, representing the first examples of Se-bridged
heteracalixarenes and thereby enlarging the scope and supra-
molecular applications of heteroatom-bridged calix(hetero)-
aromatics. UV/Vis titration studies indicated high binding affinities
for the complexation of Cu salts and anionophoric properties
depending on the substitution pattern. Further elaboration of
the synthetic and supramolecular chemistry of selenacalixarenes
is currently actively being pursued within our group.
We thank the FWO, the KU Leuven and the Ministerie
voor Wetenschapsbeleid for continuing financial support.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 43–45 45