Journal of the American Chemical Society
Page 4 of 5
cells, however, there is no significant change upon addition of N-
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
oxalylglycine (Supplementary Table S6). This is unsurprising as N-
oxalylglycine is not reported to be cell-permeable. Future
biochemical studies and further mutagenesis will likely enhance the
selectivity for ligand analogues and impart in vivo activation to
PsEFE variants.
(
1) Brandenberg, O. F.; Fasan, R.; Arnold, F. H. Exploiting and
engineering hemoproteins for abiological carbene and nitrene transfer
reactions. Curr. Opin. Biotechnol. 2017, 47, 102–111.
(2) Degtyarenko, K. Metalloproteins. In Encyclopedia of Genetics,
Genomics, Proteomics and Bioinformatics; Jorde, L.; Little, P.; Dunn, M.;
Subramaniam, S., Eds.; John Wiley & Sons, Ltd.: New York, 2005.
In conclusion, we have discovered a non-heme iron enzyme
capable of performing nitrene-transfer chemistry and enhanced that
activity via directed evolution. This is the first example of
enzymatic nitrene transfer catalyzed by a non-heme metalloprotein.
PsEFE features a metal center whose primary coordination sphere
can be altered by simple reaction additives, allowing for
modulation of catalytic activity and selectivity. We anticipate that
this biocatalytic system will lead to discovery of new
metalloenzymatic transformations not possible with previously
reported enzymes.
(
3) Holm, R. H.; Kennepohl, P.; Solomon, E. I. Structural and Functional
4) Hausinger, R. P. Fe(II)/α-Ketoglutarate-Dependent Hydroxylases
and Related Enzymes. Crit. Rev. Biochem. Mol. Biol. 2004, 39, 21–68.
5) Islam M. D.; Leissing, T. M.; Chowdhury, R.; Hopkinson, R. J.;
(
(
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Schofield, C. J. 2-Oxoglutarate-Dependent Oxygenases. Annu. Rev.
(6) (a) Matthews, M. L.; Chang, W.-c.; Layne, A. P.; Miles, L. A.; Krebs,
C.; Bollinger, J. M. Jr. Direct nitration and azidation of aliphatic carbons by
an iron-dependent halogenase. Nat. Chem. Biol. 2014, 10, 209–215. (b)
Davidson, M.; McNamee, M.; Fan, R.; Guo, Y.; Chang, W.-c. Repurposing
Nonheme Iron Hydroxylases To Enable Catalytic Nitrile Installation
through an Azido Group Assistance. J. Am. Chem. Soc. 2019, 141, 3419–
ASSOCIATED CONTENT
Supporting Information
3
423. (c) Neugebauer, M. E.; Sumida, K. H.; Pelton, J. G.; McMurry, J. L.;
Marchand, J. A.; Chang, M. C. Y. A family of radical halogenases for the
engineering of amino-acid-based products. Nat. Chem. Biol. 2019, 15,
The Supporting Information is available free of charge on the ACS
Publications website.
Materials and experimental methods, compound characterization
data (PDF)
Full nucleotide and amino-acid sequences for all reported enzyme
variants and sequences of all oligonucleotides used for mutagenesis
(7) Farwell, C. C.; Zhang, R. K.; McIntosh, J. A.; Hyster, T. K.; Arnold,
F. H. Enantioselective Enzyme-Catalyzed Aziridination Enabled by Active-
Site Evolution of a Cytochrome P450. ACS Cent. Sci. 2015, 1, 89–93.
(8) (a) McIntosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis,
J. C.; Brown, T. R.; Arnold. F. H. Enantioselective Intramolecular C–H
Amination Catalyzed by Engineered Cytochrome P450 Enzymes InꢀVitro
and InꢀVivo. Angew. Chem. Int. Ed. 2013, 52, 9309– 9312. (b) Singh, R.;
Bordeaux, M.; Fasan, R. P450-Catalyzed Intramolecular sp C–H
Amination with Arylsulfonyl Azide Substrates. ACS Catal. 2014, 4, 546–
(XLSX)
3
AUTHOR INFORMATION
Corresponding Author
5
52. (c) Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmann-Chen, S.;
Arnold, F. H. Enantioselective, intermolecular benzylic C–H amination
catalysed by an engineered iron-haem enzyme. Nat. Chem. 2017, 9, 629–
*frances@cheme.caltech.edu
Present Address
‖Amyris Biotechnologies, Emeryville, California 94608, United
States
(9) Tsutsumi, H.; Katsuyama, Y.; Izumikawa, M.; Takagi, M.; Fujie, M.;
Satoh, N.; Shin-ya, K.; Ohnishi, Y. Unprecedented Cyclization Catalyzed
by a Cytochrome P450 in Benzastatin Biosynthesis. J. Am. Chem. Soc.
10) Fukuda, H.; Ogawa, T.; Tazaki, M.; Nagahama, K.; Fujii, T.;
Author Contributions
(
§These authors contributed equally.
Tanase, S.; Morino, Y. Molecular cloning in Escherichia coli, expression,
and nucleotide sequence of the gene for the ethylene-forming enzyme of
Pseudomonas syringae pv. phaseolicola PK2. Biochem. Biophys. Res.
(11) (a) Zhang Z., Smart T. J.; Choi, H.; Hardy, F.; Lohans, C. T.;
Abboud, M. I.; Richardson, M. S. W.; Paton, R. S.; McDonough, M. A.;
Schofield, C. J. Structural and stereoelectronic insights into oxygenase-
catalyzed formation of ethylene from 2-oxoglutarate. Proc. Natl. Acad. Sci.
U.S.A. 2017, 114, 4467–4672. (b) Martinez, S.; Fellner, M.; Ferr, C. Q.;
Ritchie, A.; Hu, J.; Hausinger, R. P. Structures and Mechanisms of the Non-
Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme:
Substrate Binding Creates a Twist. J. Am. Chem. Soc. 2017, 139, 11980–
(12) Martinez, S.; Hausinger, R. P. Biochemical and Spectroscopic
Characterization of the Non-Heme Fe(II)- and 2-Oxoglutarate-dependent
Ethylene-Forming Enyzme from Pseudomonas syringae pv. phaseolicola
(13) Bennett, B. D.; Kimball, E. H.; Gao, M.; Osterhout, R.; Van Dien,
S. J.; Rabinowitz, J. D. Absolute metabolite concentrations and implied
enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 2009,
Notes
A provisional patent has been filed through the California Institute
of Technology based on the results presented here.
ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
(NSF) Division of Molecular and Cellular Biosciences (grant
MCB-1513007). N. W. G., A. M. K., and R. K. Z. acknowledge
support from the NIH training grants NIH T32 GM07616 (N. W.
G.) and NIH T32 GM112592 (A. M. K., R. K. Z.) and NSF
Graduate Research Fellowship DGE-1144469 (A. M. K, R. K. Z.).
We thank Sabine Brinkmann-Chen for critical reading of the
manuscript and Noah P. Dunham, S. B. Jennifer Kan, and Benjamin
J. Levin for helpful discussions. We thank Professor Hans Renata
and Professor Harry Gray for generously sharing plasmids.
5
, 593–599.
ACS Paragon Plus Environment