Journal of the American Chemical Society
Article
King’ondu, C. K.; Howell, A. R.; Suib, S. L. OMS-2 for Aerobic,
Catalytic, One-pot Alcohol Oxidation-Wittig Reactions: Efficient
Access to α,β-Unsaturated Esters. ChemCatChem 2014, 6, 749−752.
Dismukes, G. C. Coordination Geometry and Oxidation State
Requirements of Corner-Sharing MnO6 Octahedra for Water
Oxidation Catalysis: An Investigation of Manganite (γ-MnOOH).
ACS Catal. 2016, 6, 2089−2099. (b) Robinson, D. M.; Go, Y. B.;
Mui, M.; Gardner, G.; Zhang, Z.; Mastrogiovanni, D.; Garfunkel, E.;
Li, J.; Greenblatt, M.; Dismukes, G. C. Photochemical Water
Oxidation by Crystalline Polymorphs of Manganese Oxides:
Structural Requirements for Catalysis. J. Am. Chem. Soc. 2013, 135,
3494−3501. (c) Zaharieva, I.; Chernev, P.; Risch, M.; Klingan, K.;
Kohlhoff, M.; Fischer, A.; Dau, H. Electrosynthesis, Functional, and
Structural Characterization of a Water-oxidizing Manganese Oxide.
Energy Environ. Sci. 2012, 5, 7081−7089. (d) Dong, Y.; Li, K.; Jiang,
P.; Wang, G.; Miao, H.; Zhang, J.; Zhang, C. Simple Hydrothermal
(c) Son, Y.-C.; Makwana, V. D.; Howell, A. R.; Suib, S. L. Efficient,
Catalytic, Aerobic Oxidation of Alcohols with Octahedral Molecular
Sieves. Angew. Chem., Int. Ed. 2001, 40, 4280−4283. (d) Wang, Y.;
Yamaguchi, K.; Mizuno, N. Manganese Oxide Promoted Liquid-Phase
Aerobic Oxidative Amidation of Methylarenes to Monoamides Using
Ammonia Surrogates. Angew. Chem., Int. Ed. 2012, 51, 7250−7253.
(3) (a) Hou, J.; Li, Y.; Liu, L.; Ren, L.; Zhao, X. Effect of Giant
Oxygen Vacancy Defects on the Catalytic Oxidation of OMS-2
Nanorods. J. Mater. Chem. A 2013, 1, 6736−6741. (b) Opembe, N.
N.; Guild, C.; Kingondu, C.; Nelson, N. C.; Slowing, I. I.; Suib, S. L.
Vapor-Phase Oxidation of Benzyl Alcohol Using Manganese Oxide
Octahedral Molecular Sieves (OMS-2). Ind. Eng. Chem. Res. 2014, 53,
Preparation of α-, β-, and γ-MnO and Phase Sensitivity in Catalytic
2
Ozonation. RSC Adv. 2014, 4, 39167−39173.
1
9044−19051. (c) Hamaguchi, T.; Tanaka, T.; Takahashi, N.;
(
8) (a) Nie, J.; Liu, H. Efficient Aerobic Oxidation of 5-
Tsukamoto, Y.; Takagi, N.; Shinjoh, H. Low-temperature NO-
Adsorption Properties of Manganese Oxide Octahedral Molecular
Sieves with Different Potassium Content. Appl. Catal., B 2016, 193,
Hydroxymethylfurfural to 2,5-Diformylfuran on Manganese Oxide
Catalysts. J. Catal. 2014, 316, 57−66. (b) Fu, X.; Feng, J.; Wang, H.;
Ng, K. M. Manganese Oxide Hollow Structures with Different Phases:
Synthesis, Characterization and Catalytic Application. Catal. Commun.
2009, 10, 1844−1848. (c) Nawaz, F.; Cao, H.; Xie, Y.; Xiao, J.; Chen,
2
34−239. (d) Li, K.; Chen, J.; Peng, Y.; Lin, W.; Yan, T.; Li, J. The
Relationship between Surface Open Cells of α-MnO and CO
2
Oxidation Ability from a Surface Point of View. J. Mater. Chem. A
Y.; Ghazi, Z. A. Selection of Active Phase of MnO for Catalytic
2
2
(
017, 5, 20911−20921.
Ozonation of 4-Nitrophenol. Chemosphere 2017, 168, 1457−1466.
4) (a) Liang, S.; Teng, F.; Bulgan, G.; Zong, R.; Zhu, Y. Effect of
(9) (a) van Putten, R. J.; van der Waal, J. C.; de Jong, E.; Rasrendra,
Phase Structure of MnO Nanorod Catalyst on the Activity for CO
2
C. B.; Heeres, H. J.; de Vries, J. G. Hydroxymethylfurfural, A Versatile
Platform Chemical Made from Renewable Resources. Chem. Rev.
Oxidation. J. Phys. Chem. C 2008, 112, 5307−5315. (b) Xiao, W.;
Wang, D.; Lou, X. W. Shape-Controlled Synthesis of MnO
2
2013, 113, 1499−1597. (b) Hara, M.; Nakajima, K.; Kamata, K.
Nanostructures with Enhanced Electrocatalytic Activity for Oxygen
Reduction. J. Phys. Chem. C 2010, 114, 1694−1700. (c) Meng, Y.;
Song, W.; Huang, H.; Ren, Z.; Chen, S.-Y.; Suib, S. L. Structure−
Recent Progress in the Development of Solid Catalysts for Biomass
Conversion into High Value-added Chemicals. Sci. Technol. Adv.
Mater. 2015, 16, No. 034903. (c) Komanoya, T.; Kinemura, T.; Kita,
Y.; Kamata, K.; Hara, M. Electronic Effect of Ruthenium Nano-
particles on Efficient Reductive Amination of Carbonyl Compounds.
J. Am. Chem. Soc. 2017, 139, 11493−11499. (d) Kanai, S.; Nagahara,
I.; Kita, Y.; Kamata, K.; Hara, M. A Bifunctional Cerium Phosphate
Catalyst for Chemoselective Acetalization. Chem. Sci. 2017, 8, 3146−
Property Relationship of Bifunctional MnO Nanostructures: Highly
2
Efficient, Ultra-Stable Electrochemical Water Oxidation and Oxygen
Reduction Reaction Catalysts Identified in Alkaline Media. J. Am.
Chem. Soc. 2014, 136, 11452−11464. (d) Xie, Y.; Yu, Y.; Gong, X.;
Guo, Y.; Guo, Y.; Wang, Y.; Lu, G. Effect of the Crystal Plane Figure
on the Catalytic Performance of MnO for the Total Oxidation of
2
3153. (e) Kong, X.; Zhu, Y.; Fang, Z.; Kozinski, J. A.; Butler, I. S.; Xu,
Propane. CrystEngComm 2015, 17, 3005−3014.
L.; Song, H.; Wei, X. Catalytic Conversion of 5-Hydroxymethylfur-
(5) (a) Devaraj, S.; Munichandraiah, N. Effect of Crystallographic
fural to Some Value-added Derivatives. Green Chem. 2018, 20, 3657−
Structure of MnO on Its Electrochemical Capacitance Properties. J.
2
3
(
682.
Phys. Chem. C 2008, 112, 4406−4417. (b) Cheng, G.; Xie, S.; Lan, B.;
Zheng, X.; Ye, F.; Sun, M.; Lu, X.; Yu, L. Phase controllable synthesis
of three-dimensional star-like MnO2 hierarchical architectures as
highly efficient and stable oxygen reduction electrocatalysts. J. Mater.
Chem. A 2016, 4, 16462−16468. (c) Revathi, C.; Kumar, R. T. R.
10) (a) Bozell, J. J.; Petersen, G. R. Technology Development for
the Production of Biobased Products from Biorefinery Carbohy-
dratesthe US Department of Energy’s “Top 10” Revisited. Green
Chem. 2010, 12, 539−554. (b) Peelman, N.; Ragaert, P.; Ragaert, K.;
De Meulenaer, B.; Devlieghere, F.; Cardon, L. Heat Resistance of
New Biobased Polymeric Materials, Focusing on Starch, Cellulose,
PLA, and PHA. J. Appl. Polym. Sci. 2015, 132, 42305. (c) Eerhart, A. J.
J. E.; Faaij, A. P. C.; Patel, M. K. Replacing Fossil Based PET with
Biobased PEF; Process Analysis, Energy and GHG Balance. Energy
Electro Catalytic Properties of α, β, γ, ε-MnO and γ-MnOOH
2
Nanoparticles: Role of Polymorphs on Enzyme Free H O Sensing.
2
2
Electroanalysis 2017, 29, 1481−1489.
6) (a) Chen, H.; Wang, Y.; Lv, Y.-K. Catalytic Oxidation of NO
over MnO with Different Crystal Structures. RSC Adv. 2016, 6,
(
2
5
4032−54040. (b) Gao, F.; Tang, X.; Yi, H.; Chu, C.; Li, N.; Li, J.;
Zhao, S. In-situ DRIFTS for the Mechanistic Studies of NO
Oxidation over α-MnO , β-MnO and γ-MnO2 Catalysts. Chem.
2
2
(11) (a) Cai, J.; Ma, H.; Zhang, J.; Song, Q.; Du, Z.; Huang, Y.; Xu,
Eng. J. 2017, 322, 525−537. (c) Zhao, B.; Ran, R.; Wu, X.; Weng, D.
Phase Structures, Morphologies, and NO Catalytic Oxidation
Activities of Single-phase MnO2 Catalysts. Appl. Catal., A 2016,
J. Gold Nanoclusters Confined in a Supercage of Y Zeolite for Aerobic
Oxidation of HMF under Mild Conditions. Chem. - Eur. J. 2013, 19,
1
4215−14223. (b) Casanova, O.; Iborra, S.; Corma, A. Biomass into
Chemicals: Aerobic Oxidation of 5-Hydroxymethyl-2-furfural into
,5-Furandicarboxylic Acid with Gold Nanoparticle Catalysts.
5
14, 24−34. (d) Zhang, J.; Li, Y.; Wang, L.; Zhang, C.; He, H.
Catalytic Oxidation of Formaldehyde over Manganese Oxides with
2
Different Crystal Structures. Catal. Sci. Technol. 2015, 5, 2305−2313.
ChemSusChem 2009, 2, 1138−1144. (c) Gupta, N. K.; Nishimura,
S.; Takagaki, A.; Ebitani, K. Hydrotalcite-supported Gold-nano-
particle-catalyzed Highly Efficient Base-free Aqueous Oxidation of 5-
Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid under Atmos-
pheric Oxygen Pressure. Green Chem. 2011, 13, 824−827. (d) Davis,
S. E.; Zope, B. N.; Davis, R. J. On the Mechanism of Selective
Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
over Supported Pt and Au Catalysts. Green Chem. 2012, 14, 143−147.
(e) Kim, M.; Su, Y.; Fukuoka, A.; Hensen, E. J. M.; Nakajima, K.
Aerobic Oxidation of 5-(Hydroxymethyl)furfural Cyclic Acetal
Enables Selective Furan-2,5-dicarboxylic Acid Formation with
(e) Sun, M.; Lan, B.; Lin, T.; Cheng, G.; Ye, F.; Yu, L.; Cheng, X.;
Zheng, X. Controlled Synthesis of Nanostructured Manganese Oxide:
Crystalline Evolution and Catalytic Activities. CrystEngComm 2013,
1
5, 7010−7018. (f) Shi, F.; Wang, F.; Dai, H.; Dai, J.; Deng, J.; Liu,
Y.; Bai, G.; Ji, K.; Au, C. T. Rod-, Flower-, and Dumbbell-like MnO :
2
Highly Active Catalysts for the Combustion of Toluene. Appl. Catal.,
A 2012, 433−434, 206−213. (g) Jia, J.; Zhang, P.; Chen, L. Catalytic
Decomposition of Gaseous Ozone over Manganese Dioxides with
Different Crystal Structures. Appl. Catal., B 2016, 189, 210−218.
(7) (a) Smith, P. F.; Deibert, B. J.; Kaushik, S.; Gardner, G.; Hwang,
S.; Wang, H.; Al-Sharab, J. F.; Garfunkel, E.; Fabris, L.; Li, J.;
I
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX