Please do not adjust margins
ChemComm
Page 4 of 6
DOI: 10.1039/C7CC06528K
COMMUNICATION
Journal Name
1
P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P.
Zapp, R. Bongartz, A. Schreiber and T. E. Muller, Energy
Environ. Sci., 2012, 5, 7281.
R. Dawson, A. I. Cooper and D. J. Adams, Polym. Int., 2012,
37, 530.
K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D.
Bloch, Z. R. Herm, T. Bae, and J. R. Long, Chem. Rev., 2012,
112, 724.
(a) Y. Xu, S. Jin, H. Xu, A. Nagai and D. Jiang, Chem. Soc. Rev.,
2013, 42, 8012; (b) A. I. Cooper, Adv. Mater., 2009, 21, 1291;
(c) D. Wu, F. Xu, B. Sun, R. Fu, H. He and K. Matyjaszewski,
Chem. Rev., 2012, 112, 3959; (d) R. Dawson, A. I. Cooper and
D. J. dams, Prog. Polym. Sci., 2012, 37, 530; (e) B. C. Ma, S.
Ghasimi, K. Landfester, F. Vilela and K. A. I. Zhang, J. Mater.
increased trend with the fluoride contents increased in the
networks (Fig. S10, ESI†). For example, ZnP-5%F-CMPs at 298 K
and 1.0 bar exhibited a capacity of 34 mg g-1, which was 1.31-
times of that of the original CMPs (ZnP-5%N3-CMPs) (Fig. S10a,
ESI†). The CO2 uptake of ZnP-25%F-CMPs and ZnP-50%F-CMPs
was 52 and 90 mg g-1 at 298 K, respectively, which was 1.68-
and 1.84-times as high as original CMPs (ZnP-25%N3-CMPs and
ZnP-50%N3-CMPs) (Fig. S10(b-d), ESI†). Then, we measured the
CO2 capacity of the CMPs from 298 K to 273 K to further
investigate ultra-micropores in CMPs and to examine their
potential application in post-combustion CO2 capture. ZnP-
5%F-CMPs, ZnP-25%F-CMPs and ZnP-50%F-CMPs displayed the
CO2 capacity of 58, 84 and 130 mg g-1 at 273 K and 1.0 bar,
respectively (Fig. 3c and Fig. S10(b-d)). The CO2 capture
capacity of ZnP-XF-CMPs (X= 5, 25 and 50%) is 1.31-, 1.56- and
1.49-times of that of ZnP-XN3-CMPs (X= 5, 25 and 50%) at the
same conditions, respectively. These results indicated that the
increase of fluoride contents in the skeletons could effectively
improve the CO2 adsorption capacity of the polymers at the
same conditions.
2
3
4
Chem. A, 2015, 3, 16064.
5
6
(a) C. D. Wood, B. Tan, A. Trewin, H. J. Niu, D. Bradshaw, M.
J. Rosseinsky, Y. Z. Khimyak, N. L. Campbell, R. Kirk, E. Stockel
and A. I. Cooper, Chem. Mater., 2007, 19, 2034; (b) R.
Dawson, D. J. Adams, A. I. Cooper. Chem. Sci., 2011,
(a) Y. Xu, Y.A. Nagai and D. Jiang, Chem. Commun., 2013, 49
2, 1173.
,
1591; (b) Y. Xu, L. Chen, Z. Guo, A. Nagai and D. Jiang, J. Am.
Chem. Soc., 2011, 133, 17622.
K. Venkata Rao, R. Haldar, T. K. Maji and S. J.George, Phys.
Chem. Chem. Phys., 2016, 18, 156.
(a) K. Zhang, D. Kopetzki, P. H. Seeberger, M. Antonietti and
F. Vilela, Angew. Chem., Int. Ed., 2013, 52, 1432; (b) Q. Cao,
Q. Yin, Q. Chen, Z. B. Dong, and B. H. Han, Chem. Eur. J.,
2017, 23, 9831.
(a) Y. Kou, Y. H. Xu, Z. Q. Guo and D. Jiang, Angew. Chem.,
Int. Ed., 2011, 50, 8753; (b) X. Zhuang, F. Zhang, D. Wu, N.
Forler, H. Liang, M. Wagner, D. Gehrig, M. R. Hansen, F.
Laquai and X. Feng, Angew. Chem., Int. Ed., 2013, 52, 9668.
7
8
To investigate the binding affinity of the studied CMPs
towards CO2, we calculated the isosteric heats of adsorption
from Clausius–Clapeyron equation using adsorption data
collected at 273 K and 298 K. ZnP-XF-CMPs (X = 5, 25 and 50%)
had relatively higher CO2 uptake among the synthesized CMPs
with the heat of adsorption of about 32-37 kJ mol-1 (Fig. 3d).
The Qst values for ZnP-XN3-CMPs (X = 5, 25, 50, 75 and 100%)
are about 18-25 kJ mol-1, which are lower than those of their
corresponding perfluoroalkyl counterparts (Fig. S11, ESI†). The
result suggested that introducing fluoride element in the
polymers can effectively enhance the adsorption enthalpy of
the porous materials.
9
10 (a) Q. Chen, J. X. Wang, F. Yang, D. Zhou, N. Bian, X. J. Zhang,
C. G. Yan and B. H. Han, J. Mater. Chem., 2011, 21, 13554; (b)
K. V. Rao, S. Mohapatra, T. K. Maji and S. J. George, Chem. –
Eur. J., 2012, 18, 4505.
11 J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H.
Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak
and A. I. Cooper, Angew. Chem., Int. Ed., 2007, 46, 8574.
12 S. A, Y. Zhang, Z. Li, H. Xia, M. Xue, X. Liu and Y. Mu, Chem.
Commun., 2014, 50, 8495.
In summary, a new strategy for construction of porous
polymer with CMPs architectures has been developed.
Implementation of the strategy leads to the successful
development of three novel fluoride functionalized-CMPs,
which exhibit highly efficient uptake of CO2 than those of
original CMPs (ZnP-XN3-CMPs (X = 5, 25 and 50%)) at the same
conditions. Moreover, all of the fluoride functionalized-CMPs
show high isosteric heats of CO2 adsorption (32-37 kJ mol-1).
This work not only indicates that highly complicated three-
dimensional polymeric structures can be facilely constructed
from simple building blocks but also suggests a promising way
to improve the isosteric heats and CO2 uptake of porous
materials. This provides a new idea for the development of
new strategies for the construction of porous organic materials
in the field of adsorption.
13 (a) Z. Li, H. Li, H. Xia, X. Ding, X. Luo, X. Liu and Y. Mu, Chem.
Eur. J., 2015, 21, 17355; (b) Y. Zhang, S. A, Y. Zou, X. Luo, Z. Li,
H. Xia, X. Liu and Y. Mu, J. Mater. Chem. A, 2014,
X. Liu, H. Li, Y. Zhang, B. Xu, S. A, H. Xia and Ying Mu, Polym.
Chem., 2013, , 2445.
14 (a) R. Dawson, D. J. Adams and A. I. Cooper, Chem. Sci., 2011,
, 1173; (b) R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M.
2, 13422; (c)
4
2
Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 3875;
(c) W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna and H. C.
Zhou, J. Am. Chem. Soc., 2011, 133, 18126; (d) S. Chen, J.
Zhang, T. Wu, P. Feng and X. Bu, J. Am. Chem. Soc., 2009, 131
16027; (e) R. Vaidhyanathan, S. S. Iremonger, G. K. H.
Shimizu, P. G. Boyd, S. Alavi and T. K. Woo, Science, 2010,
,
330, 650; (f) L. H. Xie and M. P. Suh, Chem. – Eur. J., 2013, 19
11590.
,
15 (a) M. P. Krafft and J. G. Riess, J. Polym. Sci., Part A: Polym.
Chem., 2007, 45, 1185; (b) Y. Zhao, K. X. Yao, B. Teng, T.
The financial support of the National Natural Science
Foundation of China (Grants no. 21501065), Science and
Technology Program of Jilin Province (Grants no. 20160101319JC),
Changbai Mountain Scholars Program (Grants no. 2013073), and
Research on the Science and Technology of Education Department
of Jilin Province (Grants no. 2016220) is acknowledged.
Zhang and Y. Han, Energy Environ. Sci., 2013,
16 (a) S. Bandyopadhyay, A. G. Anil, A. James and A. Patra, ACS
Appl. Mater. Interfaces, 2016, , 27669; (b) S. Qiao, T. Wang,
W. Huang, J. Jiang, Z. Du, F. Shieh and R. Yang, Polym. Chem.,
2016, , 1281; (c) Z. Tang, S. Liu, Z. Lu, X. Lin, B. Zheng, R. Liu,
6, 3684.
8
7
D. Wu and R. Fu, Chem. Commun., 2017, 53, 6764; (d) M.
Trunk, A. Herrmann, H. Bildirir, A. Yassin, J. Schmidt and A.
Thomas, Chem. – Eur. J., 2016, 22, 7179.
Notes and references
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins