C O M M U N I C A T I O N S
textured thin films, and large film grain sizes. Furthermore, the
preferential “edge-on” molecular orientation doubtless favors in-
10
plane source-to-drain (S f D) transport. The excellent air-stability
of TIFDMT and P-IFDMT4 is likely related to the low LUMO
3
energies (-4.15 and -4.32 eV). The unique electronic structure
of the present polymer provides a very small band gap (1.36 eV),
rendering the HOMO level (-5.51 eV) accessible for hole injection
by Au contacts, thus enhancing p-channel operation.
In summary, we report the synthesis and characterization of new
air-stable molecular and polymeric semiconductors based on
indenofluorenebis(dicyanovinylene). Solution-processed FETs ex-
hibit high electron mobility with excellent ambient stability. The
first example of an air-stable, ambipolar polymer (P-IFDMT4) is
reported. Studies are underway to further optimize the polymer
architecture and device-processing characterisitics.
Figure 1. (A) θ-2θ XRD and grazing-incidence XRD (inset) scans for
spin-coated TIFDMT (blue line) and P-IFDMT4 (red line) films; (B)
Acknowledgment. We thank ONR (N00014-05-1-0766) and
Polyera for support of this research, and the NSF-MRSEC program
through the Northwestern University MRSEC (DMR-0520513) for
providing characterization facilities. We thank Dr. E. Szuromi and
Prof. R. F. Jordan for hospitality with GPC measurements.
Supporting Information Available: Synthetic procedures for 1-6,
device fabrication details; UV-vis/electrochemical/FET/AFM data;
Figures S1-S5. This material is available free of charge via the Internet
at http://pubs.acs.org.
Figure 2. OFET plots of devices measured in air. (A) Output curves as a
function of gate bias for P-IFDMT4-based devices; (B) transfer curve (VSD
)
100 V) for fresh TIFDMT-based device (red line) and after 5 months
storage in air (blue line).
References
(
1) (a) Facchetti, A. Mater. Today 2007, 10, 28. (b) Murphy, A. R.; Frechet,
J. M. J. Chem. ReV. 2007, 107, 1066. (c) Zaumseil, J.; Sirringhaus, H.
Chem. ReV. 2007, 107, 1296. (d) Vardeny, Z. V., Heeger, A. J.,
Dodabalapur, A., Eds. Summary of the Fundamental Research Needs in
Organic Electronic Materials; Elsevier B.V.: Amsterdam, 2005. (e)
Dimitrakopoulos, C. D.; Malenfant, P. R. L. AdV. Mater. 2002, 14, 99.
min under vacuum, followed by Au electrode (50 nm) deposition.
Thin-film microstructural order was assayed by out-of plane θ-2θ
XRD and grazing-incidence X-ray diffraction (GIXRD) scans. As
shown in Figure 1A, TIFDMT and P-IFDMT4 thin films are
highly crystalline, exhibiting Bragg reflections up to the fourth (400)
and second (200) order, respectively. Primary reflections are
observed at 2θ ) 3.46° (d-spacing ) 25.6 Å) for TIFDMT and at
(2) (a) McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; Macdonald, I.;
Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W. M.;
Chabinyc, M. L.; Kline, R. J.; Mcgehee, M. D.; Toney, M. F. Nat. Mater.
2006, 5, 328. (b) Usta, H.; Lu, G.; Facchetti, A.; Marks, T. J. J. Am. Chem.
Soc. 2006, 128, 9034. (c) Anthony, J. E. Chem. ReV. 2006, 106, 5028. (d)
Ong, B. S.; Wu, Y. L.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126,
3378.
2
θ ) 4.12° (d-spacing ) 21.4 Å) for polymer P-IFDMT4. These
data are consistent with well-organized lamellar microstructures
(
3) (a) Schmidt, R.; Ling, M. M.; Oh, J. H.; Winkler, M.; K o¨ nemann, M.;
Bao, Z.; W u¨ rthner, F. AdV. Mater. 2007, 19, 3692. (b) Wang, Z.; Kim, C.;
Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 13362. (c) Jones,
B. A.; Ahrens, M. J.; Yoon, M. H.; Facchetti, A.; Marks, T. J.; Wasielewski,
M. R. Angew. Chem., Intl. Ed. Engl. 2004, 43, 6363. (d) Katz, H. E.;
Lovinger, A. J.; Johnson, J.; Kloc, C.; Seigrist, T.; Li, W.; Lin, Y.-Y.;
Dodabalapur, A. Nature 2000, 404, 478.
having the common preferential molecular/chain “edge-on” orienta-
2
d,10
tion relative to the substrate surface (Figure S3).
The assigned
π-π stacking repeat distance is 3.1 Å (2θ ) 28.5°, inset Figure
1
A), significantly smaller than typically observed for oligo-/
1
,10
polythiophenes (3.4-3.8 Å).
As shown in Figure 1B, AFM
4) A solution-processed electron mobility of 0.21 cm V s-1 (on/off ratio
2
-1
(
characterization of TIFDMT films reveals very large plate-like
grains (3-5 µm sizes) of terraced islands with step heights of ∼2.8
nm, corresponding to the d-spacing along the lamellar layers. In
contrast, P-IFDMT4 films exhibit small grains (<0.1 µm sizes;
Figure S4).
5
)
10 ) was reported, however the device only operates in vacuum: Letizia,
J. A.; Facchetti, A.; Stern, C. L.; Ratner, M. A.; Marks, T. J. J. Am. Chem.
Soc. 2005, 127, 13476.
(
(
5) Chesterfield, R. J.; McKeen, J. C.; Newman, C. R.; Ewbank, P. C.; da
Silva Filho, D. A.; Br e´ das, J.-L.; Miller, L. L.; Mann, K. R.; Frisbie, C. D.
J. Phys. Chem. B 2004, 108, 19281.
6) Handa, S.; Miyazaki, E.; Takimiya, K.; Kunugi, Y. J. Am. Chem. Soc. 2007,
FET device characteristics were measured in ambient conditions.
Typical transfer and output plots for TIFDMT are shown in Figure
1
29, 11684.
(7) A mobility of 0.1 cm V s-1 (on/off ratio ca. 5-10) has been reported
for an n-type polymer, processed from methanesulfonic acid, a solvent
which is not attractive for large-scale applications: Babel, A.; Jenekhe, S. A.
J. Am. Chem. Soc. 2003, 125, 13656.
(8) Ambipolar behavior was reported for several polymers by using various
gate dielectric surface treatments, but measurements were carried out under
nitrogen: Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.;
2
-1
2
0
and S5. These devices exhibit n-channel operation with µ )
e
2 -1 -1 7 8
.10-0.16 cm V
s
, Ion/Ioff ) 10 -10 , and V ) 0 to ca. +5
T
V. Note that these devices exhibit negligible variations in TFT
characteristics after 5 months storage in air without exclusion of
light or humidity (Figure 2B). Interestingly, P-IFDMT4-based FETs
are ambipolar in ambient conditions and exhibit similar electron
Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194.
red-1
(
9) ELUMO is calculated as-(E1/2
+ 4.44 eV) assuming that Koopmans’
red
theorem holds (EA ≈-ELUMO). SCE energy level is taken to be-4.44
-
4
2
-1 -1
and hole mobilities (∼2 × 10 cm V
s
) and Ion/Ioff ratios
eV below the vacuum level. E is calculated from: HOMO ) LUMO-
HOMO
4
g
E (estimated from optical absorption spectra). Bard, A. J. Faulkner, L. R.
(
∼10 ; Figure 2A and S5) with V
T
values of ca. +5 V (n-channel)
Electrochemical Methods-Fundamentals and Applications; Wiley: New
and ca. -10 V (p-channel). Although the present unoptimized
mobilities are moderate, to the best of our knowledge this is the
very first example of an air-stable, highly soluble ambipolar
semiconducting polymer.
York, 1984.
(10) (a) Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Hutchison, G. R.; Ratner, M.
J. Am. Chem. Soc. 2004, 126, 13480. (b) Sirringhaus, H.; Brown, P. J.;
Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.;
Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw,
D. M. Nature 1999, 401, 685.
The observed high mobility for TIFDMT probably reflects a
combination of enhanced intermolecular π-orbital overlap, highly
JA802266U
J. AM. CHEM. SOC. 9 VOL. 130, NO. 27, 2008 8581