ORGANIC
LETTERS
2000
Vol. 2, No. 12
1737-1739
A Poly(ethylene glycol)-Supported
Quaternary Ammonium Salt: An
Efficient, Recoverable, and Recyclable
Phase-Transfer Catalyst
,†
Rita Annunziata,† Maurizio Benaglia,* Mauro Cinquini,† Franco Cozzi,† and
Graziella Tocco‡
Centro CNR and Dipartimento di Chimica Organica e Industriale, UniVersita’ degli
Studi di Milano, Via Golgi 19, I-20133 - Milano, Italy, and Dipartimento Farmaco
Chimico Tecnologico, UniVersita' degli Studi di Cagliari, Via Ospedale 72,
I-09124 - Cagliari, Italy
Received April 6, 2000
ABSTRACT
A quaternary ammonium salt readily immobilized on a soluble poly(ethylene glycol) polymer support efficiently catalyzes different reactions
carried out under phase-transfer catalysis conditions; the catalyst, easily recovered by precipitation and filtration, shows no appreciable loss
of activity when recycled three times.
One of the major problems associated with the use of soluble
catalysts lies in the recovery of the catalyst from the reaction
medium. Immobilization of the catalyst on a polymeric
matrix can provide a simple solution to this problem.1 In
this context, the ideal polymer support should be soluble in
some solvents, for the catalyzed reaction to be carried out
under optimum conditions, and insoluble in other solvents,
so that the supported catalyst can easily be isolated and
recovered by precipitation and filtration.2
been used for the immobilization of cinchona alkaloid-
derived ligands for the asymmetric dihydroxylation reaction.4
To the best of our knowledge, however, a whole catalytic
system has never been attached to PEG.
Here we report that a quaternary ammonium salt can be
easily synthesized on a modified MeOPEG, and this sup-
ported catalyst is an efficient and recoverable promoter of
several reactions carried out under phase-transfer catalysis
(PTC) conditions.5
Poly(ethylene glycol)s (PEGs) of Mw greater than 2000
Da are readily functionalized, inexpensive polymers that
feature these convenient solubility properties.3 Recently, the
mono methyl ether of PEG5000 (MeOPEG) has successfully
(4) (a) Han, H.; Janda, K. D. Tetrahedron Lett. 1997, 38, 1527-1530;
and references therein. (b) Bolm, C.; Gerlach, A. Eur. J. Org. Chem. 1998,
21-27.
(5) Starks, C. M.; Liotta, C. L.; Halpern, M. Phase-Transfer Catalysis;
Chapman & Hall: New York, 1994.
† Universita’ di Milano.
(6) (a) Benaglia, M.; Annunziata, R.; Cinquini, M.; Cozzi, F.; Ressel, S.
J. Org. Chem. 1998, 63, 8628-8629. (b) Annunziata, R.; Benaglia, M.;
Cinquini, M.; Cozzi, F. Chem. Eur. J. 2000, 6, 133-138.
(7) For a detailed description of the isolation, purification, and yield and
purity determination of PEG-supported compounds, see the Experimental
Section of ref 6b or the Supplementary Information.
(8) (a) Hodge, P.; Khosdel, E.; Waterhouse, J. J. Chem. Soc., Perkin
Trans. 1 1984, 2451-2455. (b) Bram, G.; Loupy, A.; Pedoussant, M. Bull.
Soc. Chim. Fr. 1986, 124-128. (c) McKillop, A.; Fiaud, J.-C.; Hug, R. P.
Tetrahedron 1974, 30, 1379-1382. (d) Wang, N.-C.; Teo, K.-E.; Anderson,
H. J. Can. J. Chem. 1977, 55, 4112-4116. (e) Crossland, I. Org. Synth.
1981, 60, 6-10.
‡ Universita’ di Cagliari.
(1) (a) Fruchtel, J. S.; Jung, G. Angew. Chem., Int. Ed. Engl. 1996, 35,
17-42. (b) Thomson, L. A.; Ellmann, J. A. Chem. ReV. 1996, 96, 555-
600. (c) Hermkens, P. H. H.; Ottenhejim, H. C. J.; Rees, D. Tetrahedron
1996, 52, 4527-4554. (d) Shuttleworth, S. J.; Allin, S. M.; Sharma, P. K.
Synthesis 1997, 1217-1239.
(2) (a) Bergbreiter, D. E.; Zhang, L.; Mariagnanam, V. M. J. Am. Chem.
Soc. 1993, 115, 9295-9296. (b) Neumann, R.; Cohen, M. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 1738-1740. (c) Felder, M.; Giffels, G.; Wandrey,
C. Tetrahedron: Asymmetry 1997, 8, 1975-1977.
(3) Gravert, D. J.; Janda, K. D. Chem. ReV. 1997, 97, 489-509.
10.1021/ol005901r CCC: $19.00 © 2000 American Chemical Society
Published on Web 05/19/2000