Page 5 of 7
ACS Catalysis
(1) (a) Jones, R. G.; Ando, W.; Chojnowski, J. Silicon-Containing
Complexes. Tetrahedron Lett. 1998, 39, 8947. (g) Zhang, Y.-Z.; Zhu,
S.-F.; Wang, L.-X.; Zhou, Q.-L. Copper-Catalyzed Highly
Enantioselective Carbenoid Insertion into Si−H Bonds. Angew.
Chem. Int. Ed. 2008, 47, 8496. (h) Yasutomi, Y.; Suematsu, H.;
Katsuki, T. Iridium(III)-Catalyzed Enantioselective Si−H Bond
Insertion and Formation of an Enantioenriched Silicon Center. J.
Am. Chem. Soc. 2010, 132, 4510. (i) Wang, J.-C.; Xu, Z.-J.; Guo, Z.;
Deng, Q.-H.; Zhou, C.-Y.; Wan, X.-L.; Che, C.-M. Highly
Enantioselective Intermolecular Carbene Insertion to C–H and Si–
H Bonds Catalyzed by a Chiral Iridium(III) Complex of a D4-
symmetric Halterman Porphyrin Ligand. Chem. Commun. 2012, 48,
4299. (j) Nakagawa, Y.; Chanthamath, S.; Fujisawa, I.; Shibatomi, K.;
Iwasa, S. Ru(II)-Pheox-catalyzed Si–H Insertion Reaction:
Construction of Enantioenriched Carbon and Silicon Centers. Chem.
Commun. 2017, 53, 3753. (k) Gu, H.-R.; Han, Z.; Xie, H.-J.; Lin, X.-F.
Iron-Catalyzed Enantioselective Si−H Bond Insertions. Org. Lett.
2018, 20, 6544. (l) Kan, S. B. J.; Lewis, R. D.; Chen, K.; Arnold, F. H.
Directed Evolution of Cytochrome C for Carbon–Silicon Bond
Formation: Bringing Silicon to Life. Science 2016, 354, 1048.
(6) For selected reviews, see: (a) Fürstner, A.; Davies, P. W.
Catalytic Carbophilic Activation: Catalysis by Platinum and Gold π
Acids. Angew. Chem. Int. Ed. 2007, 46, 3410. (b) Jiménez-Núñez, E.;
Echavarren, A. M. Gold-Catalyzed Cycloisomerizations of Enynes: A
Mechanistic Perspective. Chem. Rev. 2008, 108, 3326. (c) Zhang, L.-
M. A Non-Diazo Approach to α-Oxo Gold Carbenes via Gold-
Catalyzed Alkyne Oxidation. Acc. Chem. Res. 2014, 47, 877. (d)
Yeom, H.-S.; Shin, S. Catalytic Access to α-Oxo Gold Carbenes by N-
O Bond Oxidants. Acc. Chem. Res. 2014, 47, 966. (e) Qian, D.; Zhang,
J. Gold-catalyzed Cyclopropanation Reactions Using a Carbenoid
Precursor Toolbox. Chem. Soc. Rev. 2015, 44, 677. (f) Jia, M.; Ma, S.-
M. New Approaches to the Synthesis of Metal Carbenes. Angew.
Chem. Int. Ed. 2016, 55, 9134.
(7) For other examples of highly enantioselective carbene
transfer reactions using alkynes as carbene precursors, see: Pt: (a)
Charruault, L.; Michelet, V.; Taras, R.; Gladiali, S.; Genêt, J.-P.
Functionalized Carbo- and Heterocycles via Pt-catalyzed
Asymmetric Alkoxycyclization of 1,6-enynes. Chem. Commun.
2004, 850. Au: (b) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste,
F. D. Gold(I)-Catalyzed Stereoselective Olefin Cyclopropanation. J.
Am. Chem. Soc. 2005, 127, 18002. (c) Watson, I. D. G.; Ritter, S.;
Toste, F. D. Asymmetric Synthesis of Medium-Sized Rings by
Intramolecular Au(I)-Catalyzed Cyclopropanation. J. Am. Chem. Soc.
2009, 131, 2056. (d) Qian, D.-Y.; Hu, H.-X.; Liu, F.; Tang, B.; Ye, W.-
M.; Wang, Y.-D.; Zhang, J. Gold(I)-Catalyzed Highly Diastereo- and
Enantioselective Alkyne Oxidation/Cyclopropanation of 1,6-
Enynes. Angew. Chem. Int. Ed. 2014, 53, 13751. (e) Ji, K.-G.; Zheng,
Z.-T.; Wang, Z.-X.; Zhang, L.-M. Enantioselective Oxidative Gold
Catalysis Enabled by a Designed Chiral P,N-Bidentate Ligand.
Angew. Chem. Int. Ed. 2015, 54, 1245. Rh: (f) Nishimura, T.;
Kawamoto, T.; Nagaosa, M.; Kumamoto, H.; Hayashi, T. Chiral
Tetrafluorobenzobarrelene Ligands for the Rhodium-Catalyzed
Asymmetric Cycloisomerization of Oxygen- and Nitrogen-Bridged
1,6-Enynes. Angew. Chem. Int. Ed. 2010, 49, 1638. (g) Zhu, D.; Ma, J;
Luo, K.; Fu, H.-G.; Zhang, L.; Zhu, S.-F. Enantioselective
Intramolecular C–H Insertion of Donor and Donor/Donor
Carbenes by a Nondiazo Approach. Angew. Chem. Int. Ed. 2016, 55,
8452. (h) Yang, J.-M.; Li, Z.-Q.; Li, M.-L.; He, Q.; Zhu, S.-F.; Zhou Q.-L.
Catalytic B−H Bond Insertion Reactions Using Alkynes as Carbene
Precursors. J. Am. Chem. Soc. 2017, 139, 3784. (i) Zhu, D.; Chen, L.-
F.; Zhang, H.; Ma, Z.-Q.; Jiang, H.-F.; Zhu, S.-F. Highly Chemo- and
Stereoselective Catalyst-Controlled Allylic C–H Insertion and
Cyclopropanation Using Donor/Donor Carbenes. Angew. Chem. Int.
Ed. 2018, 57, 12405.
Polymers; Springer: Berlin, 2000. (b) Cash, G. G. Use of Graph-
Theoretical Parameters to Predict Activity of Organosilane
Insecticides. Pestic. Sci. 1997, 49, 29. (c) Franz, A. K.; Wilson, S. O.
Organosilicon Molecules with Medicinal Applications. J. Med. Chem.
2013, 56, 388. (d) Langkopf, E.; Schinzer, D. Uses of Silicon-
Containing Compounds in the Synthesis of Natural Products. Chem.
Rev. 1995, 95, 1375. (e) Fleming, I.; Barbero, A.; Walter, D.
Stereochemical Control in Organic Synthesis Using Silicon-
Containing Compounds. Chem. Rev. 1997, 97, 2063. (f) Jones, G. R.;
Landais, Y. The Oxidation of the Carbon-Silicon Bond. Tetrahedron
1996, 52, 7599.
(2) For a recent review, see: (a) Shintani, R. Recent Progress in
Catalytic Enantioselective Desymmetrization of Prochiral
Organosilanes for the Synthesis of Silicon-Stereogenic Compounds.
Synlett 2018, 29, 388. (b) Shintani, R.; Moriya, K.; Hayashi, T.
Palladium-Catalyzed Enantioselective Desymmetrization of
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Silacyclobutanes: Construction of Silacycles Possessing
a
Tetraorganosilicon Stereocenter. J. Am. Chem. Soc. 2011, 133,
16440. (c) Shintani, R.; Otomo, H.; Ota, K.; Hayashi, T. Palladium-
Catalyzed Asymmetric Synthesis of Silicon-Stereogenic
Dibenzosiloles via Enantioselective C-H Bond Functionalization. J.
Am. Chem. Soc. 2012, 134, 7305. (d) Zhang, Q.; An, K.; Liu, L. C.;
Zhang, Q.; Guo, H.; He, W. Rhodium-Catalyzed Intramolecular C-H
Silylation by Silacyclobutanes. Angew. Chem. Int. Ed. 2016, 55,
6319. (e) Su, B.; Harting, J. F. Ir-Catalyzed Enantioselective,
Intramolecular Silylation of Methyl C-H Bonds. J. Am. Chem. Soc.
2017, 139, 12137.
(3) (a) Uozumi, Y.; Hayashi, T. Catalytic Asymmetric Synthesis of
Optically Active 2-AIkanols via Hydrosilylation of 1-Alkenes with a
Chiral Monophosphine-Palladium Catalyst. J. Am. Chem. Soc. 1991,
113, 9887. (b) Jensen, J. F.; Svendsen, B. Y.; la Cour, T. V.; Pedersen,
H. L.; Johannsen, M. Highly Enantioselective Hydrosilylation of
Aromatic Alkenes. J. Am. Chem. Soc. 2002, 124, 4558. (c) Gribble, M.
W.; Pirnot, M. T.; Bandar, J. S.; Liu, R. Y.; Buchwald, S. L. Asymmetric
Copper Hydride-Catalyzed Markovnikov Hydrosilylation of
Vinylarenes and Vinyl Heterocycles. J. Am. Chem. Soc. 2017, 139,
2192. (d) Cheng, B.; Liu, W.-B.; Lu, Z. Iron-Catalyzed Highly
Enantioselective Hydrosilylation of Unactivated Terminal Alkenes.
J. Am. Chem. Soc. 2018, 140, 5014.
(4) (a) Chang, K. J.; Rayabarapu, D. K.; Yang, F. Y.; Cheng, C. H.
Unusual Palladium-Catalyzed Silaboration of Allenes Using Organic
Iodides as Initiators: Mechanism and Application. J. Am. Chem. Soc.
2005, 127, 126. (b) Kitanosono, T.; Zhu, L.; Liu, C.; Xu, P.; Kobayashi,
S. An Insoluble Copper(II) Acetylacetonate−Chiral Bipyridine
Complex that Catalyzes Asymmetric Silyl Conjugate Addition in
Water. J. Am. Chem. Soc. 2015, 137, 15422. (c) Zhang, Y.; Huang, J.;
Guo, Y.; Li, L.; Fu, Z.; Huang, W. Access to Enantioenriched
Organosilanes from Enals and β-Silyl Enones: Carbene
Organocatalysis. Angew. Chem. Int. Ed. 2018, 57, 4594.
(5) For a recent review on asymmetric Si−H bond insertion
reaction, see: (a) Keipour, H.; Carreras, V.; Ollevier, T. Recent
Progress in the Catalytic Carbene Insertion Reactions into the
Silicon–hydrogen Bond. Org. Biomol. Chem. 2017, 15, 5441. For
selected examples, see: (b) Buck, R. T.; Doyle, M. P.; Drysdale, M. J.;
Ferris, L.; Forbes, D. C.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Zhou,
Q.-L. Asymmetric Rhodium Carbenoid Insertion into the Si-H Bond.
Tetrahedron Lett. 1996, 37, 7631. (c) Davies, H. M. L.; Hansen, T.;
Rutberg,
J.;
Bruzinski,
P.
R.
Rhodium(II)
(S)-N-
(Arylsufonyl)Prolinate Catalyzed Asymmetric Insertions of Vinyl-
and Phenylcarbenoids into the Si-H Bond. Tetrahedron Lett. 1997,
38, 1741. (d) Ge, M.; Corey, E. J. A Method for the Catalytic
Enantioselective Synthesis of 6-silylated 2-cyclohexenones.
Tetrahedron Lett. 2006, 47, 2319. (e) Chen, D.; Zhu, D.-X.; Xu, M.-H.
Rhodium(I)-Catalyzed Highly Enantioselective Insertion of
Carbenoid into Si−H: Efficient Access to Functional Chiral Silanes.
J. Am. Chem. Soc. 2016, 138, 1498. (f) Dakin, L. A.; Schaus, S. E.;
Jacobsen, E. N.; Panek, J. S. Carbenoid Insertions into the Silicon-
Hydrogen Bond Catalyzed by Chiral Copper (I) Schiff Base
(8) (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds, Wiley, New
York, 1998. (b) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire,
A. R.; McKervey, M. A. Modern Organic Synthesis with α-
Diazocarbonyl Compounds. Chem. Rev. 2015, 115, 9981. (c) Xia, Y.;
Qiu, D.; Wang, J.-B. Transition-Metal-Catalyzed Cross-Couplings
ACS Paragon Plus Environment