10.1002/anie.201711773
Angewandte Chemie International Edition
COMMUNICATION
direct production of biologically active compounds[33] (Table 1
Entry 3). Under the given condition, the cross-coupling product
was obtained after 42 h of reaction, giving 85.2 % of conversion
efficiency (see NMR spectra of product in Figure S16). Repeating
experiments of the heteroaryl-aryl coupling revealed that the P-
BT-DEA-CO2 could be used up to extra five 24 h-cycles without
losing the conversion efficiency (Figure S17). When the amount
of caffeine was predominant up to 10 equivalents to that of the
aryldiazonium counterpart, the conversion efficiency stayed to be
73.4 %. It may be attributed to the lower solubility of excess
caffeine in water, where previous studies had to be carried out in
harsh acidic condition to dissolve the extra heteroarenes[33]. This
demonstrates that the utilization of CO2 gas in this work was
advantageous in terms of not injecting additional acid, while
making the overall condition slightly acidic via formation of
carbonic acid in water.
[1]
[2]
G. Zhang, Z.-A. Lan, X. Wang, Angew. Chem. Int. Ed. 2016, 55, 15712-
15727.
C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113,
5322-5363.
[3]
[4]
D. P. Hari, B. Konig, Chem. Commun. 2014, 50, 6688-6699.
a) B. Bonillo, R. S. Sprick, A. I. Cooper, Chem. Mater. 2016, 28, 3469-
3480; b) B. C. Ma, S. Ghasimi, K. Landfester, K. A. I. Zhang, J. Mater.
Chem. B 2016, 4, 5112-5118; c) R. S. Sprick, J.-X. Jiang, B. Bonillo, S.
Ren, T. Ratvijitvech, P. Guiglion, M. A. Zwijnenburg, D. J. Adams, A. I.
Cooper, J. Am. Chem. Soc. 2015, 137, 3265-3270; d) J. Zhang, M.
Zhang, S. Lin, X. Fu, X. Wang, J. Catal. 2014, 310, 24-30.
a) Z. J. Wang, S. Ghasimi, K. Landfester, K. A. I. Zhang, Adv. Mater.
2015, 27, 6265-6270; b) C. Yang, B. C. Ma, L. Zhang, S. Lin, S. Ghasimi,
K. Landfester, K. A. I. Zhang, X. Wang, Angew. Chem. Int. Ed. 2016, 55,
9202-9206.
[5]
[6]
[7]
S. Ghasimi, S. Prescher, Z. J. Wang, K. Landfester, J. Yuan, K. A. I.
Zhang, Angew. Chem. Int. Ed. 2015, 54, 14549-14553.
a) J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T.
Lee, J. Zhong, Z. Kang, Science 2015, 347, 970-974; b) X. Wang, K.
Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M.
Antonietti, Nat. Mater. 2009, 8, 76-80; c) Y. Wang, X. Wang, M. Antonietti,
Angew. Chem. Int. Ed. 2012, 51, 68-89.
Without light illumination, no coupling product was formed
throughout 42 h of experiment. The control experiment in the
absence of P-BT-DEA-CO2 gave a conversion of 9.2 % after 24 h
of light irradiation. This may result from the formation of charge-
transfer (CT) complex between heteroarene and diazonium ion,
generating cross-coupled product[34]. The high yield in the
presence of photocatalyst indicated that photoredox-induced
arylation was still dominant. A plausible mechanism of heteroaryl-
aryl coupling is shown in Figure S18. Upon visible light irradiation,
4-methoxybenzenediazonium tetrafluoroborate was activated to
form the aryl radical that can be added to caffeine, forming a
radical intermediate. Through the oxidation of the radical
[8]
[9]
a) Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Chem. Soc. Rev. 2013, 42,
8012-8031; b) K. Zhang, D. Kopetzki, P. H. Seeberger, M. Antonietti, F.
Vilela, Angew. Chem. 2013, 125, 1472-1476.
a) C. Butchosa, T. O. McDonald, A. I. Cooper, D. J. Adams, M. A.
Zwijnenburg, J. Phys. Chem. C 2014, 118, 4314-4324; b) W. Huang, B.
C. Ma, H. Lu, R. Li, L. Wang, K. Landfester, K. A. I. Zhang, ACS Catal.
2017, 7, 5438-5442; c) K. Schwinghammer, S. Hug, M. B. Mesch, J.
Senker, B. V. Lotsch, Energy Environ. Sci. 2015, 8, 3345-3353.
[10] R. S. Sprick, B. Bonillo, R. Clowes, P. Guiglion, N. J. Brownbill, B. J.
Slater, F. Blanc, M. A. Zwijnenburg, D. J. Adams, A. I. Cooper, Angew.
Chem. Int. Ed. 2016, 55, 1792-1796.
intermediate with
a photo-generated hole, an azacation
[11] a) S. Ghosh, N. A. Kouamé, L. Ramos, S. Remita, A. Dazzi, A. Deniset-
Besseau, P. Beaunier, F. Goubard, P.-H. Aubert, H. Remita, Nat. Mater.
2015, 14, 505-511; b) S. Ghosh, T. Maiyalagan, R. N. Basu, Nanoscale
2016, 8, 6921-6947.
intermediate was obtained, further resulting in the final cross-
coupled product after deprotonation.
In summary, we have demonstrated the CO2-reponsive
hydrophilicity switch of heterogeneous conjugated polymer
photocatalyst containing diethylamine moiety as functional group.
The CO2-triggered hydrophilicity of the photocatalyst improved
catalytic activity in aqueous medium, e.g. for photo-degradation
of dyes and organic photo-redox reactions. Furthermore, a simple
switch of CO2 to N2 facilitated the regeneration of photocatalyst
after reaction, leading to the stable cyclic performance. This study
marks one of the first attempts to construct water-compatible
polymer photocatalyst without compromising its recyclability. We
believe our strategy will offer a surfactant-free, facile, and clean
route to generate an effective heterogeneous photocatalytic
[12] G.-J. t. Brink, I. W. C. E. Arends, R. A. Sheldon, Science 2000, 287,
1636-1639.
[13] a) P. B. Pati, G. Damas, L. Tian, D. L. A. Fernandes, L. Zhang, I. B.
Pehlivan, T. Edvinsson, C. M. Araujo, H. Tian, Energy Environ. Sci. 2017,
10, 1372-1376; b) L. Wang, R. Fernández-Terán, L. Zhang, D. L. A.
Fernandes, L. Tian, H. Chen, H. Tian, Angew. Chem. Int. Ed. 2016, 55,
12306-12310.
[14] C. Zhu, L. Liu, Q. Yang, F. Lv, S. Wang, Chem. Rev. 2012, 112, 4687-
4735.
[15] a) R. Dawson, A. Laybourn, R. Clowes, Y. Z. Khimyak, D. J. Adams, A.
I. Cooper, Macromolecules 2009, 42, 8809-8816; b) H. Urakami, K.
Zhang, F. Vilela, Chem. Commun. 2013, 49, 2353-2355.
[16] S. Ghasimi, K. Landfester, K. A. I. Zhang, ChemCatChem 2016, 8, 694-
698.
system in water, which paves the way for
environmentally friendly photocatalytic reactions.
a variety of
[17] a) H. Che, M. Huo, L. Peng, T. Fang, N. Liu, L. Feng, Y. Wei, J. Yuan,
Angew. Chem. Int. Ed. 2015, 54, 8934-8938; b) L. Dong, W. Fan, H.
Zhang, M. Chen, Y. Zhao, Chem. Commun. 2017, 53, 9574-9577.
[18] J. Pinaud, E. Kowal, M. Cunningham, P. Jessop, ACS Macro Lett. 2012,
1, 1103-1107.
Acknowledgements
[19] P. G. Jessop, D. J. Heldebrant, X. Li, C. A. Eckert, C. L. Liotta, Nature
2005, 436, 1102-1102.
J. B. thanks the Alexander von Humboldt Foundation for the
postdoctoral research fellowship. K. A. I. Z. acknowledges the
Max Planck Society for financial support.
[20] Y. Liu, P. G. Jessop, M. Cunningham, C. A. Eckert, C. L. Liotta, Science
2006, 313, 958-960.
[21] a) W. Fan, X. Tong, F. Farnia, B. Yu, Y. Zhao, Chem. Mater. 2017, 29,
5693-5701; b) Y. Zhao, K. Landfester, D. Crespy, Soft Matter 2012, 8,
11687-11696; c) A. Darabi, P. G. Jessop, M. F. Cunningham, Chem. Soc.
Rev. 2016, 45, 4391-4436.
Keywords: Hydrophilicity switch• Conjugated polymer •
Heterogeneous photocatalysis • Carbon dioxide • Photo-redox
[22] Q. Yan, Y. Zhao, Angew. Chem. Int. Ed. 2013, 52, 9948-9951.
This article is protected by copyright. All rights reserved.