Inorganic Chemistry
Article
Bridged MIILnIII Complexes Derived from N,N′-Ethylenebis(3-
ethoxysalicylaldiimine) (M = Cu or Ni; Ln = Ce-Yb): Observation
of Surprisingly Strong Exchange Interactions. Inorg. Chem. 2005, 44,
3524−3536.
ORCID
(4) (a) Evangelisti, M. In Molecular Magnets: Physics and
́
́
Applications; Bartolome, J., Luis, F., Fernandez, J. F., Eds.; Springer:
Berlin, 2014; pp 365−387. (b) Evangelisti, M.; Luis, F.; de Jongh, L.
J.; Affronte, M. J. Magnetothermal properties of molecule-based
materials. J. Mater. Chem. 2006, 16, 2534−2549.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(5) For example, see: (a) Evangelisti, M.; Brechin, E. K. Recipes for
enhanced molecular cooling. Dalton Trans. 2010, 39, 4672−4676.
(b) Evangelisti, M.; Roubeau, O.; Palacios, E.; Camon, A.; Hooper, T.
This work was supported by NSERC-DG, ERA, Brock
University (Chancellor’s Chair for Research Excellence) to
Th.C.S. C.L. acknowledges support from the National Science
Foundation (NSF 1429428 and 1626332) and the CCSA
Research Corporation for Science Advancement. A.E and J.M
thank the Ministerio de Economia y Competitividad (Project
CTQ2015-63614-P) for the financial support. This work was
also funded by the National Natural Science Foundation of
China (Grant Nos. 21822107 and 21571115).
́
N.; Brechin, E. K.; Alonso, J. J. Cryogenic Magnetocaloric Effect in a
Ferromagnetic Molecular Dimer. Angew. Chem., Int. Ed. 2011, 50,
6606−6609. (c) Langley, S. K.; Chilton, N. F.; Moubaraki, B.;
Hooper, T.; Brechin, E. K.; Evangelisti, M.; Murray, K. S. Molecular
coolers: The case for [CuII GdIII4]. Chem. Sci. 2011, 2, 1166−1169.
5
(6) (a) Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets;
Oxford University Press: Oxford, U.K., 2006. (b) Rinehart, J. D.;
Long, J. R. Exploiting single-ion anisotropy in the design of f-element
single-molecule magnets. Chem. Sci. 2011, 2, 2078−2085. (c) Layfield,
R.; Murugesu, M. Lanthanides and Actinides in Molecular Magnetism;
Wiley-VCH: Weinheim, Germany, 2015.
REFERENCES
■
(1) For high-nuclearity CuII/LnIII clusters, see: (a) Leng, J.-D.; Liu,
J.-L.; Tong, M.-L. Unique nanoscale {CuII36LnIII24} (Ln = Dy and Gd)
metallo-rings. Chem. Commun. 2012, 48, 5286−5288. (b) Dermitzaki,
D.; Lorusso, G.; Raptopoulou, C. P.; Psycharis, V.; Escuer, A.;
Evangelisti, M.; Perlepes, S. P.; Stamatatos, Th. C. Molecular
(7) For example, see: (a) Feltham, H. L. C.; Brooker, S. Review of
purely 4f and mixed-metal nd-4f single-molecule magnets containing
only one lanthanide ion. Coord. Chem. Rev. 2014, 276, 1−33 (Review)
. (b) Murrie, M. Bis-tris propane as a flexible ligand for high-nuclearity
complexes. Polyhedron 2018, 150, 1−9 (Review) . (c) Alexandropou-
los, D. I.; Cunha-Silva, L.; Tang, J.; Stamatatos, Th. C. Heterometallic
Cu/Ln cluster chemistry: ferromagnetically-coupled {Cu4Ln2} com-
plexes exhibiting single-molecule magnetism and magnetocaloric
properties. Dalton Trans. 2018, 47, 11934−11941. (d) Alexandropou-
los, D. I.; Cunha-Silva, L.; Lorusso, G.; Evangelisti, M.; Tang, J.;
Stamatatos, Th. C. Dodecanuclear 3d/4f-metal clusters with a ‘Star of
David’ topology: single-molecule magnetism and magnetocaloric
properties. Chem. Commun. 2016, 52, 1693−1696.
Nanoscale Magnetic Refrigerants: A Ferrimagnetic {CuII15GdIII
}
7
Cagelike Cluster from the Use of Pyridine-2,6-dimethanol. Inorg.
Chem. 2013, 52, 10235−10237. (c) Xiong, G.; Xu, H.; Cui, J. Z.;
Wang, Q. L.; Zhao, B. The multiple core−shell structure in Cu24Ln6
cluster with magnetocaloric effect and slow magnetization relaxation.
Dalton Trans. 2014, 43, 5639−5642. (d) Xiang, S.; Hu, S.; Sheng, T.;
Fu, R.; Wu, X.; Zhang, X. A. A Fan-Shaped Polynuclear Gd6Cu12
Amino Acid Cluster: A “Hollow” and Ferromagnetic [Gd6(μ3-OH)8]
Octahedral Core Encapsulated by Six [Cu2] Glycinato Blade
Fragments. J. Am. Chem. Soc. 2007, 129, 15144−15146. (e) Zhang,
J.- J.; Hu, S.- M.; Xiang, S.- C.; Sheng, T.; Wu, X.-T.; Li, Y.-M.
Syntheses, Structures, and Properties of High-Nuclear 3d−4f Clusters
with Amino Acid as Ligand: {Gd6Cu24}, {Tb6Cu26}, and
{(Ln6Cu24)2Cu} (Ln= Sm, Gd). Inorg. Chem. 2006, 45, 7173−
7181. (f) Wu, J.; Zhao, L.; Zhang, L.; Li, X.-L.; Guo, M.; Powell, A.
K.; Tang, J. Macroscopic Hexagonal Tubes of 3d-4f Metallocycles.
Angew. Chem., Int. Ed. 2016, 55, 15574−15578. (g) Wu, J.; Zhao, L.;
Zhang, L.; Li, X.- L.; Guo, M.; Tang, J. Metallosupramolecular
Coordination Complexes: The Design of Heterometallic 3d−4f
Gridlike Structures. Inorg. Chem. 2016, 55, 5514−5519. (h) Baskar,
V.; Gopal, K.; Helliwell, M.; Tuna, F.; Wernsdorfer, W.; Winpenny, R.
E. P. 3d−4f Clusters with Large Spin Ground States and SMM
Behaviour. Dalton Trans. 2010, 39, 4747−4750.
(8) (a) Alaimo, A. A.; Worrell, A.; Das Gupta, S.; Abboud, K. A.;
Lampropoulos, C.; Christou, G.; Stamatatos, Th. C. Structural and
Magnetic Variations in a Family of Isoskeletal, Oximate-Bridged
{MnIV2MIII} Complexes (MIII=Mn, Gd, Dy). Chem. - Eur. J. 2018, 24,
2588−2592. (b) Alexandropoulos, D. I.; Manos, M. J.;
Papatriantafyllopoulou, C.; Mukherjee, S.; Tasiopoulos, A. J.;
Perlepes, S. P.; Christou, G.; Stamatatos, Th. C. Squaring the
clusters”: a MnIII4NiII molecular square from nickel(II)-induced
4
structural transformation of a MnII/III/IV cage. Dalton Trans. 2012,
12
41, 4744−4747. (c) Papatriantafyllopoulou, C.; Stamatatos, Th. C.;
Efthymiou, C. G.; Cunha-Silva, L.; Almeida Paz, F. A.; Perlepes, S. P.;
Christou, G. A High-Nuclearity 3d/4f Metal Oxime Cluster: An
Unusual Ni8Dy8 “Core-Shell” Complex from the Use of 2-
Pyridinealdoxime. Inorg. Chem. 2010, 49, 9743−9745.
(9) Alexandropoulos, D. I.; Poole, K. M.; Cunha-Silva, L.; Ahmad
Sheikh, J.; Wernsdorfer, W.; Christou, G.; Stamatatos, Th. C. A family
of ’windmill’-like {Cu6Ln12} complexes exhibiting single-molecule
magnetism behavior and large magnetic entropy changes. Chem.
Commun. 2017, 53, 4266−4269.
(10) Richardson, P.; Gagnon, K. J.; Teat, S. J.; Lorusso, G.;
Evangelisti, M.; Tang, J.; Stamatatos, T. C. New Dioximes as Bridging
Ligands in 3d/4f-Metal Cluster Chemistry: One-Dimensional Chains
of Ferromagnetically Coupled {Cu6Ln2} Clusters Bearing Acenaph-
thenequinone Dioxime and Exhibiting Magnetocaloric Properties.
Cryst. Growth Des. 2017, 17, 2486−2497.
(11) Katritzky, A. R.; Wang, Z.; Hall, C. D.; Akhmedov, N. G.;
Shestopalov, A. A.; Steel, P. J. Cyclization of alpha-Oxo-oximes to 2-
substituted benzoxazoles. J. Org. Chem. 2003, 68, 9093−9099.
(12) Putala, M.; Kastner-Pustet, N.; Mannschreck, A. Diastereose-
lective reaction of (MP)-pentahelicene-7,8-dione with trans-cyclo-
hexane-1,2-diamine. Thermal and photochemical transformations of
its product. Tetrahedron: Asymmetry 2002, 12, 3333−3342.
(2) Andruh, M.; Ramade, I.; Codjovi, E.; Guillou, O.; Kahn, O.;
Trombe, J.-C. Crystal structure and magnetic properties of [Ln2Cu4]
hexanuclear clusters (where Ln = trivalent lanthanide). Mechanism of
the gadolinium(III)-copper(II) magnetic interaction. J. Am. Chem.
Soc. 1993, 115, 1822−1829.
(3) (a) Costes, J.-P.; Duhayon, C.; Mallet-Ladeira, S.; Vendier, L.;
Garcia-Tojal, J.; Lopez Banet, L. Antiferromagnetic Cu−Gd
interactions through an oxime bridge. Dalton Trans. 2014, 43,
11388−11396. (b) Cremades, E.; Gomez-Coca, S.; Aravena, D.;
Alvarez, S.; Ruiz, E. Theoretical Study of Exchange Coupling in 3d-Gd
Complexes: Large Magnetocaloric Effect Systems. J. Am. Chem. Soc.
2012, 134, 10532−10542. (c) Ramade, I.; Kahn, O.; Jeannin, Y.;
Robert, F. Design and Magnetic Properties of a Magnetically Isolated
GdIIICuII Pair. Crystal Structures of [Gd(hfa)3Cu(salen)], [Y(hfa)3-
Cu(salen)], [Gd(hfa)3Cu(salen)(Meim)], and [La(hfa)3(H2O)Cu-
(salen)] [hfa = Hexafluoroacetylacetonato, salen = N,N′-Ethylene-
bis(salicylideneaminato), Meim = 1-Methylimidazole]. Inorg. Chem.
1997, 36, 930−936. (d) Koner, R.; Lin, H.-H.; Wei, H.-H.; Mohanta,
S. Syntheses, Structures, and Magnetic Properties of Diphenoxo-
H
Inorg. Chem. XXXX, XXX, XXX−XXX