10.1002/adsc.201700906
Advanced Synthesis & Catalysis
Houben-Weyl Methods of Molecular Transformations:
E. Schaumann, Ed.; Thieme: Stuttgart, 2002, Vol. 11,
pp 481-492.
[9] Some reviews for diaryliodonium salts, see: a) E. A.
Merritt, B. Olofsson, Angew. Chem. Int. Ed. 2009, 48,
9052; Angew. Chem. 2009, 121, 9214; b) E. A. Merritt,
B. Olofsson, Synthesis 2011, 2011, 517; c) B. Olofsson,
Top. Curr. Chem. 2015, 373, 135; d) K. Aradi, B. L.
Tóth, G. L. Tolnai, Z. Novák, Synlett 2016, 27, 1456; e)
M. Fañanás-Mastral, Synthesis 2017, 49, 1905.
[5] Selected recent examples, see: a) L. Liu, L.-W. Qian, S.
Wu, J. Dong, Q. Xu, Y. Zhou, S.-F. Yin, Org. Lett.
2017, 19, 2849; b) T. Gieshoff, A. Kehl, D.
Schollmeyer, K. D. Moeller, S. R. Waldvogel, Chem.
Commun. 2017, 53, 2974; c) C. Sen, T. Sahoo, S. M.
Galani, A. B. Panda, S. C. Ghosh, ChemistrySelect
2016, 1, 2542; d) Y.-L. Lai, J.-S. Ye, J.-M. Huang,
Chem. Eur. J. 2016, 22, 5425; e) N. Aljaar, C. C.
Malakar, J. Conrad, U. Beifuss, J. Org. Chem. 2015, 80,
10829; f) X. Chen, F. Ji, Y. Zhao, Y. Liu, Y. Zhou, T.
Chen, S.-F. Yin, Adv. Synth. Catal. 2015, 357, 2924; g)
Y. H. Cho, C.-Y. Lee, D.-C. Ha, C.-H. Cheon, Adv.
Synth. Catal. 2012, 354, 2992; h) W.-C. Li, C.-C Zeng,
L.-M. Hu, H.-Y. Tian, R. D. Little, Adv. Synth. Catal.
2013, 355, 2884; i) W.-J. Yoo, H. Yuan, H. Miyamura,
S. Kobayashi, Adv. Synth. Catal. 2011, 353, 3085.
[10] Selected examples of O-arylation and [3,3]-
rearrangement sequence, see: a) T. J. Maimone, S. L.
Buchwald, J. Am. Chem. Soc. 2010, 132, 9990; b) N.
Takeda, M. Ueda, S. Kagehira, H. Komei, N. Tohnai,
M. Miyata, T. Naito, O. Miyata, Org. Lett. 2013, 15,
4382; c) K. Miyagi, K. Moriyama, H. Togo,
Heterocycles 2014, 89, 2122; d) T. Tomakinian, C.
Kouklovsky, G. Vincent, Synlett 2015, 26, 1269; e) Z.-
X. Wang, W.-M. Shi, H.-Y. Bi, X.-H. Li, G.-F. Su, D.-
L. Mo, J. Org. Chem. 2016, 81, 8014; f) W.-M. Shi, X.-
P. Ma, C.-X. Pan, G.-F. Su, D.-L. Mo, J. Org. Chem.
2015, 80, 11175.
[6] a) S. Zhang, Y.-H. Niu, X.-S. Ye, Org. Lett. 2017, 19,
3608; b) Y. Li, M. Wang, W. Fan, F. Qian, G. Li, H. Lu,
J. Org. Chem. 2016, 81, 11743; c) S. Yamada, K.
Murakami, K. Itami, Org. Lett. 2016, 18, 2415; d) F.
Hu, J. Yang, Y. Xia, C. Ma, H. Xia, Y. Zhang, J. Wang,
Organometallics 2016, 35, 1409; e) F. Zhu, J.-L. Tao,
Z.-X. Wang, Org. Lett. 2015, 17, 4926; f) L.
Ackermann, S. Barfusser, J. Pospech, Org. Lett. 2010,
12, 724; g) C. M. Filloux, T. Rovis, J. Am. Chem. Soc.
2015, 137, 508; h) M. Corro, M. Besora, C. Maya, E.
Alvarez, J. Urbano, M. R. Fructos, F. Maseras, P. J.
Perez, ACS Catal. 2014, 4, 4215; i) R. S. Sánchez, F. A.
Zhuravlev, J. Am. Chem. Soc. 2007, 129, 5824.
[11] H. Gao, Q.-L. Xu, C. Keene, L. Kürti, Chem. Eur. J.
2014, 20, 8883.
[12] R. Ghosh, E. Stridfeldt, B. Olofsson, Chem. Eur. J.
2014, 20, 8888.
[13] Some examples for metal and ligand controlled
selectivity for multiple nucleophiles, see: a) A. Shafir,
P. A. Lichtor, S. L. Buchwald, J. Am. Chem. Soc. 2007,
129, 3490; b) D. Mati, S. L. Buchwald, J. Am. Chem.
Soc. 2009, 131, 17423; c) G. O. Jones, P. Liu, K. N.
Houk, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132,
6205; d) M. Rovira, M. Soler, I. Güell, M.-Z. Wang, L.
Gómez, X. Ribas, J. Org. Chem. 2016, 81, 7315; e) T.
Xu, H. Alper, J. Am. Chem. Soc. 2014, 136, 16970.
[7] a) J. Jiang, H. Zou, Q. Dong, R. Wang, L. Lu, Y. Zhu,
W. He, J. Org. Chem. 2016, 81, 51; b) C. S. Cho, D. T.
Kim, J. Q. Zhang, S.-L. Ho, T.-J. Kim, S. C. Shim, J.
Heterocycl. Chem. 2002, 39, 421; c) J. Chang, K. Zhao,
S. Pan, Tetrahedron Lett. 2002, 43, 951; d) R. S.
Pottorf, N. K. Chadha, M. Katkevics, V. Ozola, E. Suna,
H. Ghane, T. Regberg, M. R. Player, Tetrahedron Lett.
2003, 44, 175; e) W. Chen, W. An, Y. Wang, A. Yu, J.
Org. Chem. 2016, 81, 10857; f) J. A. Garduño, J. J.
García, ACS Catal. 2015, 5, 3470; g) M. S. Mayo, X.
Yu, X. Zhou, X. Feng, Y. Yamamoto, M. Bao, J. Org.
Chem. 2014, 79, 6310.
[14] a) X.-P. Ma, W.-M. Shi, X.-L. Mo, X.-H. Li, L.-G. Li,
C.-X. Pan, B. Chen, G.-F. Su, D.-L. Mo, J. Org. Chem.
2015, 80, 10098; b) S.-Y. Wu, X.-P. Ma, C. Liang, D.-
L. Mo, J. Org. Chem. 2017, 82, 3232; c) W.-M. Shi, F.-
P. Liu, Z.-X. Wang, H.-Y. Bi, C. Liang, L.-P. Xu, G.-F.
Su, D.-L. Mo, Adv. Synth. Catal. 2017, 359, 2741.
[15] The equivalents of TFA were also optimized. 4aa was
obtained in 23% yield (0.1 equiv of TFA), 48% yield
(0.2 equiv of TFA), 65% yield (0.3 equiv of TFA); 75%
yield (0.5 equiv of TFA). Other types of acids were
also examined, please see more details for the
optimization of [3,3]-rearrangement in Supporting
Information.
[8] a) G. Evindar, R. A. Batey, J. Org. Chem. 2006, 71,
1802; b) S. Ueda, H. Nagasawa, Angew. Chem. Int. Ed.
2008, 47, 6411; Angew. Chem. 2008, 120, 6511; c) J. I.
Urzúa, R. Contreras, C. O. Salas, R. A. Tapia, RSC Adv.
2016, 6, 82401; d) J. Peng, C. Zong, M. Ye, T. Chen, D.
Gao, Y. Wang, C. Chen, Org. Biomol. Chem. 2011, 9,
1225; e) V. Kavala, D. Janreddy, M. J. Raihan, C.-W
Kuo, C. Ramesh, C.-F. Yao, Adv. Synth. Catal. 2012,
354, 2229; f) S. K. Alla, P. Sadhu, T. Punniyamurthy, J.
Org. Chem. 2014, 79, 7502; g) J. Sedelmeier, F. Lima,
A. Litzler, B. Martin, F. Venturoni, Org. Lett. 2013, 15,
5546.
[16] An example for [1,2]-phenyl migration of iodonium
salts, see: P.-O. Nobby, T. B. Petersen, M. Bielawski, B.
Olofsson, Chem. Eur. J. 2010, 16, 8251.
[17] Selected example for the bidentate N-ligand, see: A.
K.-W. Chan, E. S.-H. Lam, A. Y.-Y. Tam, D. P.-K.
Tsang, W. H. Lam, M.-Y. Chan, W.-T. Wong, V. W.-
W. Yam, Chem. Eur. J. 2013, 19, 13910.
6
This article is protected by copyright. All rights reserved.