Page 9 of 10
Organic & Biomolecular Chemistry
Please do not adjust margins
Organic & Biomolecular Chemistry
ARTICLE
3-Ethyl-3-methyl-D-norvaline (11b). Compound 10b (1.91 (RGPIN-2016-05083) (S.L.B.) and NSERC-USRAsVie(wNA.Trt.icSle. Oanlninde
DOI: 10.1039/C9OB01823A
g, 12 mmol) was mixed with concentrated HCl (50 mL) and the J.W.M.M).
mixture was refluxed for 24 h. Upon cooling to room
temperature, white crystals formed. After 30 min, the crystals
Notes and references
were collected by suction filtration and air-dried: yield 1.32 g
(56%). The hydrochloride salt was then converted to the free
amino acid by dissolving the crystals (0.70 g, 3.6 mmol) in water
(4 mL) with gentle heating followed passage through a
reversed-phase, solid-phase extraction column (60 mL/10 g,
C18-E, 55 µm, 70 Å). Fractions (3 mL) containing the amino acid
(yellow spots on a silica TLC sheet developed with a potassium
dichromate dip) were combined and the aqueous solvent was
removed by lyophilization to give a white powder: yield 0.40 g
1
M. Pal, M. Khanal, R. Marko, S. Thirumalairjan and S. L.
Bearne, Chem. Commun., 2016, 52, 2740-2743.
M. Pal, N. M. Easton, H. Yaphe and S. L. Bearne, Bioorg. Chem.,
2018, 77, 640-650.
K. R. Hanson, Arch. Biochem. Biophys., 1981, 211, 575-588.
A. D. Mesecar and D. E. Koshland, Jr., Nature, 2000, 403, 614-
615.
F. Siddiqi, J. R. Bourque, H. Jiang, M. Gardner, M. St. Maurice,
C. Blouin and S. L. Bearne, Biochemistry, 2005, 44, 9013-9021.
A. D. Lietzan, M. Nagar, E. A. Pellmann, J. R. Bourque, S. L.
Bearne and M. St. Maurice, Biochemistry, 2012, 51, 1160-
1170.
P. Bhaumik, W. Schmitz, A. Hassinen, J. K. Hiltunen, E.
Conzelmann and R. K. Wierenga, J. Mol. Biol., 2007, 367, 1145-
1161.
2
3
4
5
6
1
(70%); m.p. 183 °C; H NMR (500 MHz, DMSO-d6) δ 8.34 (br s,
NH2, 2H), 3.59 (s, CHNH2, 1H), 1.31-1.47 (m, 2 CH2, 4H), 0.90
(s, CH3C, 3H), 0.794 (t, J = 7.4 Hz, CH3) and 0.790 (t, J = 7.4 Hz
CH3) (6H); 13C NMR (126 MHz, DMSO-d6) δ 169.97 (COOH),
58.03 (CHCOOH), 37.70 (CCH2), 27.27 (CH2), 26.84 (CH2), 19.85
(CCH3), 7.51 (CH3CH2), 7.47 (CH3CH2) ppm. HRMS-ESI+ (m/z):
[M+H]+ calcd for C8H18NO2, 160.1338, found 160.1331.
7
8
9
M. St. Maurice and S. L. Bearne, Biochemistry, 2004, 43, 2524-
2532.
M. Nagar, A. D. Lietzan, M. St. Maurice and S. L. Bearne,
Biochemistry, 2014, 53, 1169-1178.
10 M. Pal and S. L. Bearne, Bioorg. Med. Chem. Lett., 2014, 24,
1432-1436.
Quantification, enantiomeric excess, and circular dichroism (CD)
Compounds 6a, 6b, 11a, and 11b were quantified using 1H NMR
spectroscopy with pyrazine as an internal standard. Each amino
acid (20.0 mg) was dissolved in DMSO-d6 (1.000 mL). To this
solution (525 μL), a solution of pyrazine (175 μL, 0.400 M in
DMSO-d6) was added to yield a final concentration of pyrazine
equal to 0.100 M. The ratio of peak areas corresponding to the
1H NMR signals arising from the protons of pyrazine and the
CH3CH2 protons of compounds 6a, 6b, 11a, and 11b were used
to calculate the concentration.
The enantiomeric excess was determined using HPLC
analysis of the o-phthaldialdehyde-derivatized amino acids as
described for the kinetic assays (vide supra). Compounds 6a
and 11a were derivatized in the presence of N-acetyl-L-cysteine
and compounds 6b and 11b were derivatized in the presence of
N-isobutyryl-L-cysteine.
11 M. Harty, M. Nagar, L. Atkinson, C. M. LeGay, D. J. Derksen and
S. L. Bearne, Bioorg. Med. Chem. Lett., 2013, 23, 390-393.
12 Y. Mutaguchi, T. Ohmori, T. Wakamatsu, K. Doi and T.
Ohshima, J. Bacteriol., 2013, 195, 5207-5215.
13 R. Awad, P. Gans and J. B. Reiser, Biochimie, 2017, 137, 165-
173.
14 J. Hayashi, Y. Mutaguchi, Y. Minemura, N. Nakagawa, K.
Yoneda, T. Ohmori, T. Ohshima and H. Sakuraba, Acta
Crystallogr. D Struct. Biol., 2017, 73, 428-437.
15 Y. Mutaguchi, K. Kasuga and I. Kojima, Front. Microbiol., 2018,
9, 1540.
16 F. Cava, H. Lam, M. A. de Pedro and M. K. Waldor, Cell Mol.
Life Sci., 2011, 68, 817-831.
17 J. C. Kaiser and D. E. Heinrichs, MBio, 2018, 9, e01188-01118.
18 H. Lam, D. C. Oh, F. Cava, C. N. Takacs, J. Clardy, M. A. de Pedro
and M. K. Waldor, Science, 2009, 325, 1552-1555.
19 I. Kolodkin-Gal, D. Romero, S. Cao, J. Clardy, R. Kolter and R.
Losick, Science, 2010, 328, 627-629.
For CD analyses, compounds 6a, 6b, 11a, and 11b were each
dissolved in 5.0 M HCl to yield a final concentration of 5.0
mg/mL and CD spectra were recorded between 200 and 260 nm
using a quartz cuvette with a 0.1-cm light path. In addition, the
spectrum of the 5.0 M HCl was recorded. The spectrum for each
compound was recorded in triplicate, averaged, and then the
averaged spectrum of the 5.0 M HCl solution was subtracted.
20 T. M. Amorim Franco and J. S. Blanchard, Biochemistry, 2017,
56, 5849-5865.
21 L. Resnick and R. J. Galante, Tetrahedron: Asymmetry, 2006,
17, 846-849.
22 W. W. Cleland, Methods Enzymol., 1982, 87, 366-369.
23 V. M. Powers, C. W. Koo, G. L. Kenyon, J. A. Gerlt and J. W.
Kozarich, Biochemistry, 1991, 30, 9255-9263.
24 H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem.,
1997, 62, 7512-7515.
25 J. Sambrook, E. F. Fritsch and T. Maniatis, Molecular Cloning.
A Laboratory Manual, Cold Spring Harbor Laboratory Press,
Plainview, New York, 1989.
26 E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel and
A. Bairoch, Nucleic Acids Res., 2003, 31, 3784-3788.
27 I. H. Segel, Enzyme Kinetics, John Wiley and Sons, Inc., New
York, 1975.
28 Y. Cheng and W. H. Prusoff, Biochem. Pharmacol., 1973, 22,
3099-3108.
29 P. K. Glasoe and F. A. Long, J. Phys. Chem., 1960, 64, 188-190.
30 S. J. Zuend, M. P. Coughlin, M. P. Lalonde and E. N. Jacobsen,
Nature, 2009, 461, 968-970.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
We thank Dr. David Jakeman for the use of his hydrogenation
apparatus and Dr. Jan Rainey for use of his lyophilizer. We also
thank the Natural Sciences and Engineering Research Council
(NSERC) of Canada for support through a Discovery Grant
This journal is © The Royal Society of Chemistry 20xx
Org. Biomol. Chem., 2019, 00, 1-3 | 9
Please do not adjust margins