P. J. Brothers, W. Siebert et al.
3
3
8.26 (d, JH,H =7.9 Hz, 4H; Hortho), 8.19 (d, JH,H =7.9 Hz, 4H; Hortho), 7.72
(d, 3JH,H =7.8 Hz, 4H; Hmeta), 7.64 (d, 3JH,H =7.8 Hz, 4H; Hmeta), 2.72 (s,
6H; CH3), 2.66 ppm (s, 6H; CH3); 11B NMR (64.2 MHz, CD2Cl2): d=
ꢀ13.3 ppm.
Acknowledgements
The authors are grateful to the Marsden Fund (administered by the
Royal Society of New Zealand), the University of Auckland Research
Committee and the Deutsche Forschungsgemeinschaft (DFG) for finan-
cial support.
[B
2(cat)
U
A
0.31 mmol) were dissolved in toluene (30 mL) and cooled to ꢀ788C
before the addition of catechol (0.34 g, 0.31 mmol). The mixture was al-
lowed to warm to RT and the insoluble [H4(ttp)]Cl2 salt was removed by
G
filtration. The solvent was removed from the filtrate to give 12a as a
[1] J. K. M. Sanders, N. Bampos, Z. Clyde-Watson, S. L. Darling, J. C.
Hawley, H. J. Kim, C. C. Mak, S. J. Webb in The Porphyrin Hand-
book, Vol. 3 (Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Aca-
demic Press, San Diego, 1999, pp. 1.
[2] P. J. Brothers, Adv. Organomet. Chem. 2001, 48, 289.
[3] P. J. Brothers, J. Porphyrins Phthalocyanines 2003, 6, 259.
[4] W. J. Belcher, P. D. W. Boyd, P. J. Brothers, M. J. Liddell, C. E. F.
Rickard, J. Am. Chem. Soc. 1994, 116, 8416.
[5] W. J. Belcher, M. Breede, P. J. Brothers, C. E. F. Rickard, Angew.
Chem. 1998, 110, 1133; Angew. Chem. Int. Ed. 1998, 37, 1112.
[6] a) A. Weiss, H. Pritzkow, P. J. Brothers, W. Siebert, Angew. Chem.
2001, 113, 4311; Angew. Chem. Int. Ed. 2001, 40, 4182; b) A. Weiss,
PhD thesis, University of Heidelberg (Germany), 2002.
[7] T. Kçhler, M. C. Hodgson, D. Seidel, J. M. Veauthier, S. Meyer, V.
Lynch, P. D. W. Boyd, P. J. Brothers, J. L. Sessler, Chem. Commun.
2004, 1060.
black solid that was washed with hexane (0.98 mg, 40%). M.p. >3008C;
3
1H NMR (200 MHz, CD2Cl2): d=9.10 (AB-q, 8H; Hb), 8.10 (brd, JH,H
=
3
7.9 Hz, 8H; Hortho), 7.58 (d, 3JH,H =7.9 Hz, 4H; Hmeta), 7.48 (d, JH,H
=
7.8 Hz, 4H; Hmeta), 5.43(m, 2H; H
N
N
(s, 6H; CH3), 2.68 ppm (s, 6H; CH3); 11B NMR (64.2 MHz, CD2Cl2): d=
ꢀ15 ppm (br); UV/Vis (CH2Cl2): lmax (loge)=370 (3.71), 419 (5.12),
516 nm (4.23); FABMS (NPOE): m/z (%): 798 (10) [M]+, 690 (18)
[MꢀC6H4O2]+, 671 (40) [MꢀC6H4O2B2+H]+.
[B
A
ACHTREUNG
in CH2Cl2 (5 mL) before Na[B
AHCTREUNG
the solution was stirred for 10 min at RT. NaCl was removed by filtration
and the solvent was removed from the filtrate under vacuum to yield 13a
as a green solid (80 mg, 94%); M.p. >3008C; 1H NMR (200 MHz,
CD2Cl2): d=9.52 (AB-q, 8H; Hb), 8.20 (brm, 8H; Hortho), 7.73(d, 4H;
Hmeta), 7.65 (d, 4H; Hmeta), 2.75 (s, 6H; CH3), 2.70 (s, 6H; CH3), 7.57 (s,
16H; Hortho[B
A
N
[8] J. Arnold, D. Y. Dawson, C. G. Hoffman, J. Am. Chem. Soc. 1993,
115, 2707.
[9] A. Moezzi, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 1992,
114, 2715.
(64.2 MHz, CD2Cl2): d=ꢀ6.8 ppm ([B
U
m/z (%): 707 (100) [M+O+H]+, 691 (60) [M+H]+, 671 (5) [Mꢀ2B+H]+.
[B2(ttp)] 14a: Compound 5a (0.24 g, 0.28 mmol) was dissolved in THF
G
[10] P. L. Timms, J. Chem. Soc. Dalton Trans. 1972, 830.
[11] H. Schulz, Diplomarbeit, Universität Heidelberg (Germany), 1988.
[12] E. Vos De Wael, E. J. A. Pardoen, J. A. van Koeveringe, J. Lugten-
burg, Recl. Trav. Chim. Pays-Bas 1977, 96, 306.
[13] J. V. Bonfiglio, R. Bonnett, D. G. Buckley, D. Hamzetash, M. B.
Hursthouse, K. M. A. Malik, A. F. McDonagh, J. Trotter, Tetrahe-
dron 1983, 39, 1865–1874.
(20 mL) and cooled to ꢀ308C, then C10H14Mg
N
10ꢀ4 mbar to give 14a as
a
black solid. M.p. >3008C; 1H NMR
3
(200 MHz, CD2Cl2): d=6.38 (d, JH,H =7.6 Hz, 4H; Hmeta), 6.27 (d, JH,H
7.6 Hz, 4H; Hmeta), 5.84 (d, 3JH,H =7.6 Hz, 4H; Hortho), 5.69 (d, JH,H
[14] Personal communication, P. D. W. Boyd, 2004.
[15] R. Guilard, A. Zrineh, A. Tabard, A. Endo, B. C. Han, C. Lecomte,
M. Souhassou, A. Habbou, M. Ferhat, K. M. Kadish, Inorg. Chem.
1990, 29, 4476.
[16] K. M. Kadish, B. Boisselier-Cocolios, A. Coutsolelos, P. Mitaine, R.
Guilard, Inorg. Chem. 1985, 24, 4521.
[17] P. Cocolios, R. Guilard, P. Fournari, J. Organomet. Chem. 1979, 179,
311.
[18] J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry, 4th ed,
Harper Collins, New York, 1993.
[19] D. L. Reger, T. D. Wright, C. A. Little, J. J. S. Lamba, M. D. Smith,
Inorg. Chem. 2001, 40, 3810.
[20] B. Bogdanovic, S. Liao, R. Mynott, K. Schlichte, U. Westeppe,
Chem. Ber. 1984, 117, 1387.
[21] B. Bogdanovic, N. Janke, C. Krüger, R. Mynott, K. Schlichte, U.
Westeppe, Angew. Chem. 1985, 97, 972; Angew. Chem. Int. Ed.
Engl. 1985, 24, 960.
[22] R. Kosmo, C. Kautz, K. Meerholz, J. Heinze, K. Müllen, Angew.
Chem. 1989, 101, 63 8;Angew. Chem. Int. Ed. Engl. 1989, 28, 604.
[23] J. A. Cissell, T. P. Vaid, A. L. Rheingold, J. Am. Chem. Soc. 2005,
127, 12212.
7.6 Hz, 4H; Hortho), 2.12 (s, 6H; CH3), 1.63(s, 6H; CH 3), 1.05 (d, JH,H
4.4 Hz, 4H; Hb), 0.51 ppm (d, 3JH,H =4.4 Hz, 4H; Hb); 11B NMR
(64.2 MHz, CD2Cl2): d=ꢀ18 ppm.
Computational details: DFT calculations were carried out by using the
[29]
Gaussian 03Program.
[(BX2)2
12, 13, 14 and [Zn
311G(d,p) basis sets for all elements except for iodine in which a SDD
Full geometry optimisations were carried out for
(porphine)], [(BX2)(dpm)] (X=F, Cl, Br, I),
(ttp)]2ꢀ by using the B3LYP density functional with 6-
G
A
ACHTREUNG
ACHTREUNG
pseudopotential and basis set were used.[30] Harmonic vibrational fre-
quencies were calculated for each structure to verify that each stationary
point was a minimum on the molecular hypersurface. These vibrational
calculations were used as a basis for the calculation of enthalpies and
Gibbs energies in the thermochemical analysis of the reductive elimina-
tion reactions of [(BX2)2
A
[(BnBu)2(porphine)] molecule was optimised by using the B3LYP/
ACHTREUNG
6-31G(d) model.
NMR chemical shieldings were calculated by using the GIAO method
with the B3LYP/6-311+G
A
chemical shifts were then calculated with reference to chemical shieldings
calculated by using the same models for BF3·(CH3CH2)2O) and tetrame-
A
[24] Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. von R.
Schleyer, Chem. Rev. 2005, 105, 3842.
thylsilane, respectively.
For the boron complexes [(BX)2(porphine)] with heavier halogens,
G
[25] J. A. Pople, K. G. Untchl, J. Am. Chem. Soc. 1966, 88, 4811.
[26] A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour,
L. Korsakoff, J. Org. Chem. 1967, 32, 476.
11B NMR spectroscopy chemical shifts were calculated by using the ADF
program.[31,32] Calculations were carried out with the BPW91 density
functional and TZP, triple zeta all electron basis sets by using the two-
component zero-order regular approximation (ZORA) method,[33] which
includes spin-orbit coupling. The ADF NMR property module was used
to calculate the nuclear shieldings by using the spin-orbit ZORA method
[27] J. Arnold, J. Chem. Soc. Chem. Commun. 1990, 976.
[28] H. Brand, J. A. Capriotti, J. Arnold, Inorg. Chem. 1994, 33, 4334.
[29] Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schle-
gel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomer-
y, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyen-
gar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
with the geometries obtained from above (B3LYP/6-311G
(d,p)).[33,34] Cal-
A
culated chemical shifts were determined by the difference between the
shielding in these molecules and those calculated for the reference
A
N
5992
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2007, 13, 5982 – 5993