E
R. Zhang et al.
Letter
Synlett
On the basis of the reported literatures8,11–14 and the
above results of control experiments, a plausible mecha-
nism is depicted in Scheme 7. Under the heating conditions,
the hydrolysis of Bunte salts A in the presence of water
leads to the formation of species bisulfate anion and thiol or
thiol anion B in the reaction mixture.11 The disulfide C are
thus generated through the attack by thiol or thiol anion B
on another Bunte salt A.12 Next, the reaction of disulfide C
with I2 to gives RSI D which is an electrophilic species,13a
and an intermediate F appeared via the attack of alkene E
by RSI D.8a,13b The subsequent reaction of the intermediate F
with nitriles followed by Ritter reaction, alcohol affords β-
acetamido sulfides G, and β-alkoxy sulfides I with the re-
lease of HI.14 Finally, two molecules of HI were oxidized by
DMSO and transformed into molecular I2 accompanied by
the formation of water and dimethyl sulfide.13a,15
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
o
nrtogI
f
rmoaitn
References and Notes
(1) (a) Cook, S.; Furube, A.; Katoh, R. J. Mater. Chem. 2012, 22, 4282.
(b) Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C.; Su, Y. S. Chem.
Rev. 2014, 114, 11751. (c) Je, S. H.; Hwang, T. H.; Talapaneni, S.
N.; Buyukcakir, O.; Kim, H. J.; Yu, J. S.; Woo, S. G.; Jang, M. C.;
Son, B. K.; Coskun, A.; Choi, J. W. ACS Energy Lett. 2016, 1, 566.
(2) (a) Beno, B. R.; Yeung, K. S.; Bartberger, M. D.; Pennington, L. D.;
Meanwell, N. A. J. Med. Chem. 2015, 58, 4383. (b) Dahlin, J. L.;
Nissink, J. M.; Strasser, J. M.; Francis, S.; Higgins, L. A.; Zhou, H.;
Zhang, Z. G.; Walters, M. A. J. Med. Chem. 2015, 58, 2091.
(c) Kardos, J.; Szabo, Z.; Heja, L. J. Med. Chem. 2016, 59, 777.
(3) (a) Meng, D.; Chen, W. L.; Zhao, W. M. J. Nat. Prod. 2007, 70, 824.
(b) Gelais, A. S.; Legaylt, J.; Mshvildadze, V.; Pichette, A. J. Nat.
Prod. 2015, 78, 1904. (c) Hill, R.; Sutherland, A. Nat. Prod. Rep.
2016, 33, 122.
RSSO3Na
A
(4) (a) Wakamatsu, J.; Stark, T. D.; Hofmann, T. J. Agric. Food Chem.
2016, 64, 5845. (b) Williams, K. L.; Tjeerdema, R. S. J. Agric. Food
Chem. 2016, 64, 4838.
(5) (a) Jensen, K. H.; Webb, J. D.; Sigman, M. S. J. Am. Chem. Soc.
2010, 132, 17471. (b) Ricci, P.; Khotavivattana, T.; Pfeifer, L.;
Médebielle, M.; Morphy, J. R.; Gouverneur, V. Chem. Sci. 2017, 8,
1195.
H2O
RSH
or
+
RSSR
C
RSSO3Na
RS
A
B
HSO4
2
NaI
DMS + H2O
SO3
OH
S
DMSO
I2
HI
I
I
(6) (a) Fang, Z. S.; Qiang, P. X.; Hao, Z.; Adedamola, S.; Ping, Z. J. J.
Org. Chem. 2015, 7, 3682. (b) Vieira, A. A.; Azeredo, J. B.; Godoi,
M.; Santi, C.; Junior, E. N. S.; Braga, A. L. J. Org. Chem. 2015, 80,
2120. (c) Wang, D. Y.; Zhang, R. X.; Lin, S.; Yan, Z. H.; Guo, S. M.
Synlett 2016, 27, 2003. (d) Yang, F. L.; Wang, F. X.; Wang, T. T.;
Wang, Y. J.; Tian, S. K. Chem. Commun. 2014, 17, 2111. (e) Wei,
W.; Wen, J. W.; Yang, D. S.; Wu, M.; You, J. M.; Wang, H. Org.
Biomol. Chem. 2014, 39, 7678.
HI
O
R
HN
S
RSI
D
I
S
Ar
RCN + H2O
Ar
R
Ritter reaction
F
G
Ar
R1OH
E
(7) (a) Gu, W. X.; Silverman, R. B. J. Org. Chem. 2011, 76, 8287.
(b) Wang, X. C.; Shaaban, K. A.; Elshahawi, S. I.; Ponomareva, L.
V.; Sunkara, M.; Zhang, Y. N.; Copley, G. C.; Hower, J. C.; Morris,
A. J.; Kharel, M. K.; Thorson, J. S. J. Nat. Prod. 2013, 76, 1441.
(c) Singh, S. B.; Zink, D. L.; Dorso, K.; Motyl, M.; Salazar, O.;
Basilio, A.; Vicente, F.; Byrne, K. M.; Ha, S.; Genilloud, O. J. Nat.
Prod. 2009, 72, 345.
OR1
S
R
Ar
I
Scheme 7 Plausible reaction mechanism
(8) (a) Cui, H. H.; Liu, X. X.; Wei, W.; Yang, D. S.; He, C. L.; Zhang, T.
T.; Wang, H. J. Org. Chem. 2016, 81, 2252. (b) Zheng, Y.; He, Y.;
Rong, G. W.; Zhang, X. L.; Weng, Y. C.; Dong, K. Y.; Xu, X. F.; Mao,
J. C. Org. Lett. 2015, 17, 5444.
(9) (a) Bunte, H. Chem. Ber. 1874, 7, 646. (b) Distler, H. Angew.
Chem., Int. Ed. Engl. 1967, 6, 544.
(10) (a) Reeves, J. T.; Camara, K.; Han, Z. S.; Xu, Y.; Lee, H.; Busacca, C.
A.; Senanayake, C. H. Org. Lett. 2014, 16, 1196. (b) Ding, Y. C.;
Xie, P.; Zhu, W. H.; Xu, B. J.; Zhao, W. N.; Zhou, A. H. RSC Adv.
2015, 5, 31347. (c) Qi, H.; Zhang, T. X.; Wan, K. F.; Luo, M. M.
J. Org. Chem. 2016, 81, 4262. (d) Li, J.; Cai, Z. J.; Wang, S. Y.; Ji, S.
J. Org. Biomol. Chem. 2016, 14, 9384.
In summary, a direct and facile method has been devel-
oped for the synthesis of β-acetamido sulfides through the
acetamidosulfenyation of alkenes in moderate to good
yields in which odorless solid Bunte salts were used as thio-
lating reagents, NaI as a catalyst, DMSO as the mild oxidant,
and nitriles as both the solvent and nucleophiles.16 Further-
more, the reaction can be extended for alcohols substrate
leading to the synthesis of β-alkoxy sulfides, respectively.
(11) Abbasi, M.; Mohammadizadeh, M. R.; Saeedi, N. New J. Chem.
2016, 40, 89.
Acknowledgment
(12) Milligan, B.; Savillea, B.; Swan, J. M. J. Chem. Soc. 1961, 4850.
(13) (a) Parumala, S. K. R.; Peddinti, R. K. Green Chem. 2015, 17, 4068.
(b) Schmid, G. H.; Garratt, D. G. Tetrahedron Lett. 1983, 24, 5299.
We are grateful for the financial support from the National Natural
Science Foundation of China (21302084).
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–F