Organic Process Research & Development
Communication
NOESY experiments. The structure assignment of 9 was confirmed by
an X-ray crystal structure of 1.
REFERENCES
■
(1) (a) Catrina, S. B.; Lewitt, M.; Massambu, C.; Dricu, A.; Grunler,
̈
(11) A similar strategy to build an isoxazole attached to a pyrimidine
core is described in: (a) Reference 7a: (b) Kumar, C. H. V.; Kavitake,
S.; Kumar, S. S.; Cornwall, P.; Ashok, M.; Bhagat, S.; Manjunatha, S.
G.; Nambiar, S. Org. Process Res. Dev. 2012, 16, 1416−1421.
(12) The Boc protecting group was briefly investigated for the
second-generation approach but was not pursued.
(13) Propargyl bromide is shock sensitive as a neat liquid but is
generally considered safe to use as an 80% solution in PhMe. See
Bretherick’s Handbook of Reactive Chemical Hazards, 7th ed.; Elsevier:
Boston, 2007, Vol. 1.
J.; Axelson, M.; Biberfeld, P.; Brismark, K. Br. J. Cancer 2005, 92,
1467−1474. (b) Denly, A.; Wallace, J. C.; Cosgrove, L. J.; Forbes, B. E.
Horm. Metab. Res. 2003, 35, 778−785. (c) Dunn, S. E.; Ehrlich, M.;
Sharp, N. J.; Reiss, K.; Solomon, G.; Hawkins, R.; Baserga, R.; Barrett,
J. C. J. Cancer Res. 1998, 58, 3353−3361. (d) Hellawell, G. O.; Turner,
G. D. H.; Davies, D. R.; Poulsom, R.; Brewster, S. F.; Macaulay, V. M.
Cancer Res. 2002, 62, 2942−2950. (e) Lahm, H.; Amstad, P.; Wyniger,
J.; Yilmaz, A.; Fischer, J. R.; Schreyer, M.; Givel, J. C. Int. J. Cancer
1994, 58, 452−459. (f) Lee, C. T.; Park, K. H.; Adachi, Y.; Seol, J. Y.;
Yoo, C. G.; Kim, Y. M.; Han, S. K.; Shim, Y. S.; Coffee, K.; Dikov, M.
M.; Carbone, D. P. Cancer Gene Ther. 2003, 10, 57−63. (g) Mitsiades,
C. S.; Mitsiades, N. S.; McMullan, C. J.; Poulaki, V.; Shringarpure, R.;
Akiyama, M.; Hideshima, T.; Chauhan, D.; Joseph, M.; Libermann, T.
A.; Garcia-Echeverria, C.; Pearson, M. A.; Hofmann, F.; Anderson, K.
C.; Kung, A. L. Cancer Cell. 2004, 5, 221−230.
(14) (a) Bello, A. M.; Bende, T.; Wei, L.; Wang, X.; Majchrzak-Kita,
B.; Fish, E. N.; Kotra, L. P. J. Med. Chem. 2008, 51, 2734−2743.
(b) Turck, A.; Ple,
57, 4489−4505.
́ ́
N.; Mongin, F.; Queguiner, G. Tetrahedron 2001,
(15) (a) Nowak, P.; Cole, D. C.; Brooijmans, N.; Bursavich, M. G.;
Curran, K. J.; Ellingboe, J. W.; Gibbons, J. J.; Hollander, I.; Hu, Y.;
Kaplan, J.; Malwitz, D. J.; Toral-Barza, L.; Verheijen, J. C.; Zask, A.;
Zhang, W.-G.; Yu, K. J. Med. Chem. 2009, 52, 7081−7089.
(b) Schomaker, J. M.; Delia, T. J. J. Org. Chem. 2001, 66, 7125−
7128. (c) Peng, Z.-.H.; Journet, M.; Humphrey, G. Org. Lett. 2006, 8,
395−398. (d) Yaziji, V.; Coelho, A.; Maatougui, A. E.; Brea, J.; Loza,
M. I.; Garcia-Mera, X.; Sotelo, E. J. Comb. Chem. 2009, 11, 519−522.
(16) The initial drug product formulation was a 50 mg/mL, 10 mL
sterile solution of 1. Delivering the freebase of 1 provided the latitude
for the formulations development scientists to explore as many
counterions and dissolution aids as possible.
(2) (a) Summy, J. M.; Gallick, G. E. Cancer Metastasis Rev. 2003, 22,
337. (b) Yeatman, T. J. Nat. Rev. Cancer 2004, 4, 470−480.
(3) (a) An, X.; Tiwari, A. K.; Sun, Y.; Ding, P.-R.; Ashby, C. R.; Chen,
Z.-S. Leukemia Res. 2010, 34, 1255−1268. (b) Hantschel, O.; Superti-
Furga, G. Nat. Rev. Mol. Cell Biol. 2004, 5, 33−44.
(4) Nicolini, F. E.; Mauro, M. J.; Martinelli, G.; Kim, D.-W.; Soverini,
S.; Muller, M.; Hochhaus, A.; Cortes, J.; Chuah, C.; Dufva, I. H.;
̈
Apperley, J. F.; Yagasaki, F.; Pearson, J. D.; Peter, S.; Sanz Rodriguez,
C.; Preudhomme, C.; Giles, F.; Goldman, J. M.; Zhou, W. Blood 2009,
114, 5271−5278.
(5) Chen, J.; Dalrymple, L. E.; Epshteyn, S.; Forsyth, T. P.; Huynh,
T. P.; Ibrahim, M. A.; Leahy, J. W.; Lewis, G. L.; Mann, G.; Mann, L.
W.; Noguchi, R. T.; Ridgway, B. H.; Sangalang, J. C.; Schnepp, K. L.;
Shi, X.; Takeuchi, C. S.; Williams, M. A.; Nuss, J.; Cheung, A. K. PCT
Int. Appl. WO/2006/074057, 2006. Chem Abstr. 145, 137879.
(6) (a) Brown, D. J. In The Pyrimidines; Interscience Publishers: New
York, 1994. (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41,
4176−4211. (c) Parent, A. A.; Gunther, J. R.; Katzenellenbogen, J. A. J.
Med. Chem. 2008, 51, 6512−6530. (d) Padilla, A. G.; Pearlman, B. A.
Org. Process Res. Dev. 2006, 10, 921−926. (e) Delia, T. J.; Stark, D.;
Glenn, S. K. J. Heterocycl. Chem. 1995, 32, 1177−1180. (f) Delia, T. J.;
Nagarajan, A. J. Heterocycl. Chem. 1998, 35, 269−273. (g) Joshi, S.;
Maikap, G. C.; Titirmare, S.; Chaudhari, A.; Gurjar, M. K. Org. Process
Res. Dev. 2010, 14, 657−660. (h) Sagi, V. N.; Liu, T.; Lu, X.; Bartfai,
T.; Roberts, E. Bioorg. Med. Chem. Lett. 2011, 11, 7210−7215.
(i) Zanda, M.; Talaga, P.; Wagner, A.; Mioskowski, C. Tetrahedron
Lett. 2000, 41, 1757−1761.
(17) When over 3 equiv of 9 was charged to push the conversion of
12, the subsequent SNAr addition reaction time between 3 to 13 was
nearly 2-fold, and 14·HCl precipitated as a difficult-to-filter waxy solid.
(18) The intermediate 14·HCl contained ∼13% of the SNAr product
between unreacted 3 and 12.
(19) (a) Kantorowski, E. J; Brown, S. P.; Kurth, M. J. J. Org. Chem.
1998, 63, 5272−5274. (b) Mukaiyama, T.; Hoshino, T. J. Am. Chem.
Soc. 1960, 82, 5339−5342. (c) A related system: Cecchi, L.; De Sarlo,
F.; Marchetti, F. Eur. J. Org. Chem. 2006, 4852−4860.
(20) Reaction calorimetry using an RC-1 instrument returned a DSC
onset 160 °C, −138 J/g. The reaction data are presented in the
Supporting Information.
(21) The root cause for the nearly 8-fold increase in 18 was
investigated shortly after the completion of the second GMP
campaign. The alkylation step of this campaign was presumably run
with water levels higher than were encountered during development
and the previous scale-up campaign, likely causing the formation of 18.
Water content analysis of 12, propargyl bromide, and the reaction
solvent from the second campaign showed values similar to those in
the two development batches and the first GMP campaign. Potential
sources of water introduction pointed to the absorption of moisture on
the postmilled K2CO3 or a wet feed line.
(7) (a) Nowak, T.; Purkiss, S. C.; Thomas, A. P. PCT Int. Appl.
WO/2008/117051, 2008. Chem. Abstr. 149, 425969. (b) Wang, T.;
Lamb, M. L.; Scott, D. A.; Wang, H.; Block, M. H.; Lyne, P. D.; Lee, J.
W.; Davies, A. M.; Zhang, H.-J.; Zhu, Y.; Gu, F.; Han, Y.; Wang, B.;
Mohr, P. J.; Kaus, R. J.; Josey, J. A.; Hoffmann, E.; Thress, K.;
MacIntyre, T.; Wang, H.; Omer, C. A.; Yu, D. J. Med. Chem. 2008, 51,
4672−4684.
(8) O’Brien, D. E.; Weinstock, L. T.; Cheng, C. C. J. Med. Chem.
1968, 11, 387−388.
(9) (a) Liu, K.-C.; Shelton, B. R.; Howe, R. K. J. Org. Chem. 1980, 45,
3916−3918;(b) Barlaam, B.; Pape, A.; Thomas, A. PCT Int. Appl.
WO/2003/048133, 2003. Chem. Abstr. 139, 36535. (c) Barbachyn, M.
R.; Cleek, G. J.; Dolak, L. A.; Garmon, S. A.; Morris, J.; Seest, E. P.;
Thomas, R. C.; Toops, D. S.; Watt, W.; Wishka, D. G.; Ford, C. W.;
Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H.;
Adams, W. J.; Friis, J. M.; Slatter, J. G.; Sams, J. P.; Oien, N. L.; Zaya,
M. J.; Weinkers, L. C.; Wynalda, M. A. J. Med. Chem. 2003, 46, 284−
302. (d) Girardin, M.; Dolman, S. J.; Lauzon, S.; Ouellet, S. G.;
Hughes, G.; Fernandez, P.; Zhou, G.; O’Shea, P. D. Org. Process Res.
Dev. 2011, 15, 1073−1080.
(10) Although the regioisomer of 9 was not available at the time of
process development, LC/MS analyses of 9 and subsequent
intermediates found no evidence of regioisomers derived from 9.
The chemical structure of 9 was initially assigned by COSY and
H
dx.doi.org/10.1021/op400137m | Org. Process Res. Dev. XXXX, XXX, XXX−XXX