344
Y.X. Wu et al. / Spectrochimica Acta Part A 82 (2011) 340–344
which one azacrown is occupied with a metal ion and the other is
unoccupied (1M) and an intramolecular sandwich complex (1Mꢀ).
Meanwhile, in a certian extent, the structure of 1M2 will be formed,
but it is just a small proportion of the complex. The fluorescence
intensities of 1M and 1Mꢀ are expected to be larger than that of
free 1, because the PET process is blocked by coordination of the
nitrogen atoms to the metal ions. The UV–vis and fluorescence
formation of 1:1 complex with Ba2+. The ionic diameter for Ba2+
[3] W.S. Xia, R.H. Schmehl, C.J. Li, Chem. Commun. (2000) 695–696.
[4] H.F. Ji, G.M. Brown, R. Dabestani, Chem. Commun. (1999) 609–610.
[5] (a) R.Y. Tsien, Biochemistry 19 (1980) 2396–2404;
(b) R.Y. Tsien, Nature 290 (1981) 527–528;
(c) G. Grynkiewitz, M. Poenie, R.Y.J. Tsien, Biol. Chem. 260 (1985) 3440–3450.
[6] G. Machata, in: H.G. Seiler, H. Sigel (Eds.), Handbook on Toxicity of Inorganic
Compounds, Marcel Dekker, Inc., New York, 1988, pp. 97–101.
[7] (a) C.J. Pedersen, J. Am. Chem. Soc. 89 (1967) 7017–7036;
(b) N.S. Poonia, A.V. Bajaj, Chem. Rev. 79 (1979) 389–445;
(c) R.M. Izatt, J.S. Bradshaw, S.A. Nielsen, J.D. Lamb, J.J. Christensen, S. Debabrata,
Chem. Rev. 85 (1985) 271–339;
(d) G.W. Gokel, Crown Ethers and Cryptands, The Royal Society of Chemistry,
Cambridge, 1991, pp. 108.
[8] (a) B. Valeur, I. Leray, Coord. Chem. Rev. 205 (2000) 3–40;
(b) S. Quici, A. Manfredi, M. Maestri, I. Manet, P. Passaniti, V. Balzani, Eur. J. Org.
Chem. (2000) 2041–2046;
˚
(2.70 A) [26] is larger than the effective cavity diameter for aza-
˚
15-crown-5 (1.7–2.2 A). Thus 1 forms the intramolecular sandwich
complex with Ba2+ (1–Ba2+ in Scheme 2) as observed in the crystal
structure of (15-crown-5)2Ba2+ complex [27]. Formation of a sand-
wich complex of 1 restricts rotation of thieno[2,3-b]thiophene rings
and affects the electronic property of the thieno[2,3-b]thiophene
skeleton. On the 1:1 complexation with barium ion, 1Mꢀ is predom-
inantly formed [28], therefore, the small UV–vis spectral changes
and the modest fluorescence enhancements were observed.
(c) C. Di Pietro, G. Guglielmo, S. Campagna, M. Diotti, A. Manfredi, S. Quici, New
J. Chem. (1998) 1037–1039;
(d) L. Prodi, F. Bolletta, M. Montalti, N. Zaccheroni, P.B. Savage, J.S. Bradshaw,
R.M. Izatt, Tetrahedron Lett. 39 (1998) 5451–5454;
(e) L. Prodi, F. Bolletta, N. Zaccheroni, C.I.F. Watt, N.J. Mooney, Chem. Eur. J. 4
(1998) 1090–1094;
(f) C. Erk, Chem. Res. 39 (2000) 3582–3588.
[9] R.A. Bissell, A.P. de Silva, H.Q.N. Gunaratne, P.L.M. Lynch, G.E.M. Maguire, C.P.
McCoy, K.R.A.S. Sandanayake, Top. Curr. Chem. 168 (1993) 243–264.
[10] T. Jin, Chem. Commun. (1999) 2491–2492.
[11] (a) D. Marquis, J.P. Desvergne, H. Bouas-Laurent, J. Org. Chem. 60 (1995)
7984–7996;
4. Conclusion
(b) F. Fages, J.P. Desvergne, H. Bouas-Laurent, J.M. Lehn, Y. Barrans, P. Marseau,
M. Meyer, A.M. Albrecht-Gary, J. Org. Chem. 59 (1994) 5264–5271;
(c) A. Yamauchi, T. Hayashita, S. Nishizawa, M. Watanabe, N. Teramae, J. Am.
Chem. Soc. 121 (1999) 2319–2320;
We have synthesized
a novel receptor based on 3,4-
dimethylthieno[2,3-b]thiophene moiety for cation recognition. The
receptor 1 shows distinctive UV–vis and fluorescence responses for
Ba2+ due to restriction of the conformational change through the
formation of the intramolecular sandwich complex. Selectivity of
receptors would be tuned by substitution of aza-15-crown-5 moi-
eties to appropriate functional groups. Further studies on this line
are in progress. We believe that a variety of fluorophores can be
effectively used in different media (for example in water/organic
solvent mixtures and/or aqueous micellar solutions) in the future.
(d) J. Strauss, J. Daub, Org. Lett. 4 (2002) 683–686.
[12] (a) H. Shizuka, K. Takada, T. Morita, J. Phys. Chem. 84 (1980) 994–999;
(b) S.A. McFarland, N.S. Finney, J. Am. Chem. Soc. 123 (2001) 1260–1261;
(c) W.S. Xia, R.H. Schmehl, C.J. Li, J.T. Mague, C.P. Luo, D.M. Guldi, J. Phys. Chem.
B 106 (2002) 833–843.
[13] K.C. Wu, M.O. Ahmed, C.Y. Chen, G.W. Huang, Y.S. Hon, P.T. Chou, Commun.
Chem. (2003) 890–891.
[14] K. Kimura, T. Shono, in: Y. Inoue, G.W. Gokel (Eds.), Cation Binding by Macro-
cycles: Complexation of Cationic Species by Crown Ethers, Marcel Dekker, Inc.,
New York, 1990, pp. 429–463.
[15] A. Comel, G. Kirsch, J. Heterocyclic Chem. 38 (2001) 1167–1171.
[16] H. Togo, T. Hirai, Synlett 5 (2003) 702–704.
[17] M. Shao, P. Dongare, L.N. Dawe, D.W. Thompson, Y.M. Zhao, Org. Lett. 13 (2010)
3053–3060.
Acknowledgments
[18] (a) J.S. Kim, O.J. Shon, J.A. Rim, S.K. Kim, J. Yoon, J. Org. Chem. 67 (2002) 2348;
(b) J.S Kim, K.H. Noh, S.H. Lee, S.K. Kim, S.K. Kimand, J. Yoon, J. Org. Chem. 68
(2003) 597.
[19] M. Kimura, K. Shi, K. Hashimotol, Z.Z. Hu, Luminescence 22 (2007)
229–235.
We thank for financial support by the open project program of
Key Laboratory of Environmentally Friendly Chemistry and Appli-
cations of Ministry of Education China (No. 09HJYH04) and Hunan
Science & Technology Department Project (No. 2009FJ3166).
[20] H. Sakamoto, T. Yamamura, K. Takumi, K. Kimura, J. Phys. Org. Chem. 20 (2007)
900–907.
[21] K. Rurack, M. Kollmannsberger, U. Resch-Genger, J. Daub, J. Am. Chem. Soc. 122
(2000) 968.
References
[22] R. Murugavel, S. Kuppuswamy, S. Randoll, Inorg. Chem. 47 (2008)
6028–6039.
[23] (a) J. Bourson, B. Valeur, J. Phys. Chem. 93 (1989) 3871–3876;
(b) M. Yuan, W. Zhou, X. Liu, et al., J. Org. Chem. 73 (2008) 5008–5014.
[24] (a) P. Job, Ann. Chim. 9 (1928) 113–116;
(b) W.C. Vosburgh, G.R. Cooper, J. Am. Chem. Soc. 63 (1941) 437–442.
[25] (a) T.D. James, S. Shinkai, Chem. Commun. (1995) 1483–1485;
(b) L. Nun˜ez, R.D. Rogers, J. Coord. Chem. 28 (1993) 347–354;
(c) J.D. Owen, Perkin Trans. 2 (1983) 407–415.
[26] R.D. Shannon, Acta Crystallogr. Sect. A 32 (1976) 751–767.
[27] P.C. Junk, J.W. Steed, Dalton Trans. (1999) 407–414.
[28] S. Kondo, T. Kinjo, Y. Yano, Tetrahedron Lett. 46 (2005) 3183–3186.
[1] (a) A.P. de Silva, J. Wilers, G. Zlokarnik, Proc. Natl. Acad. Sci. U.S.A. 96 (1999)
8336–8337;
(b) A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy,
G.T. Rademacher, T.E. Rice, Chem. Rev. 97 (1997) 1515–1566;
(c) S.L. Wiskur, H. Aït-Haddou, J.J. Lavigne, E.V. Anslyn, Acc. Chem. Res. 34 (2001)
963–972;
(d) F. Sancenón, R. Martínez-Mán˜ez, M.A. Miranda, M.J. Seguí, J. Angew. Chem.
42 (2003) 647–650;
(e) L. Fabbrizzi, M. Licchelli, A. Taglietti, Dalton Trans. (2003) 3471–3479;
(f) T. Gunnlaugs-son, P. Leonard, Chem. Commun. (2005) 3114–3131.
[2] Other mechanistic bases for fluorescent chemosensors, are known (induced
charge transfer, excited-state proton transfer, e.g.). See Ref. [1].