Full Paper
doi.org/10.1002/ejic.202000810
EurJIC
European Journal of Inorganic Chemistry
[4] a) K. Naka, T. Kato, S. Watase, K. Matuskawa, Inorg. Chem. 2012, 51, 4420;
b) H. Imoto, S. Tanaka, T. Kato, T. Yumura, S. Watase, K. Matsukawa, K.
Naka, Organometallics 2016, 35, 3647; c) H. Imoto, S. Nishiyama, K. Naka,
Bull. Chem. Soc. Jpn. 2018, 91, 349; d) H. Sasaki, H. Imoto, T. Kitao, T.
Uemura, T. Yumura, K. Naka, Chem. Commun. 2019, 55, 6487.
[5] a) H. Schmidbaur, A. Schier, Chem. Soc. Rev. 2008, 37, 1931; b) H. Schmid-
baur, A. Schier, Chem. Soc. Rev. 2012, 41, 370; c) E. E. Langdon-Jones,
S. J. A. Pope, Chem. Commun. 2014, 50, 10343.
[6] For recent papers, see: a) T. Seki, K. Kashiyama, H. Ito, Dalton Trans. 2019,
48, 7105; b) A. Chu, F. K.-W. Hau, L.-Y. Yao, V. W.-W. Yam, ACS Mater. Lett.
2019, 1, 277; c) M.-Y. Leung, S. Y.-L. Leung, K.-C. Yim, A. K.-W. Chan,
M. Ng, V. W.-W. Yam, J. Am. Chem. Soc. 2019, 141, 19466; d) T. Seki,
N. Toyoshima, H. Ito, Dalton Trans. 2020, 49, 2073; e) Y. Dong, J. Zhang,
A. Li, J. Gong, B. He, S. Xu, J. Yin, S. H. Liu, B. Z. Tang, J. Mater. Chem. C
2020, 8, 894; f) T. Seki, K. Ida, H. Sato, S. Aono, S. Sakaki, H. Ito, Chem.
Eur. J. 2020, 26, 735.
less solid of Au2Cl2(dpapz) (90 mg, 0.090 mmol, 60 %). Recrystalliza-
tion: slow diffusion to mix MeOH with a CH2Cl2 solution. 1H-NMR
(CDCl3, 400 MHz): δ = 8.71 (s, 2 H), 7.60–7.58 (m, 8 H), 7.52–7.48 (m,
4 H), 7.44–7.40(m, 8 H). 13C-NMR cannot be measured because of
the low solubility.
Au2Cl2(dpaq):
A CH2Cl2 solution (20 mL) of dpaq (80 mg,
0.140 mmol) and AuCl (64 mg, 0.28 mmol) was used to obtain yel-
low solid of Au2Cl2(dpaq) (69 mg, 0.066 mmol, 48 %). Recrystalliza-
tion: slow diffusion to mix MeOH with a CH2Cl2 solution. 1H-NMR
(CDCl3, 400 MHz): δ = 8.02–8.00 (m, 2H), 7.89–7.86 (m, 2H), 7.64 (d,
J = 8 Hz, 8H), 7.48 (t, J = 6 Hz, 4H), 7.41 (t, J = 8 Hz, 8H). 13C-NMR
cannot be measured because of the low solubility.
Acknowledgments
This work was supported by JSPS KAKENHI, grant Number
19H04577 (Coordination Asymmetry) and 20H02812 [Grant-in-
Aid for Scientific Research (B)] to H. I.
[7] H. Imoto, S. Nishiyama, T. Yumura, S. Watase, K. Matsukawa, K. Naka,
Dalton Trans. 2017, 46, 8077.
[8] a) H. Imoto, Polym. J. 2018, 50, 837; b) H. Imoto, K. Naka, Chem. Eur. J.
2019, 25, 1883.
[9] a) J. W. B. Reesor, G. F. Wright, J. Org. Chem. 1957, 22, 382; b) P. S. Elmes,
S. Middleton, B. O. West, Aust. J. Chem. 1970, 23, 1559.
[10] a) K. Naka, T. Umeyama, Y. Chujo, J. Am. Chem. Soc. 2002, 124, 6600;
b) A. Nakahashi, K. Naka, Y. Chujo, Organometallics 2007, 26, 1827.
[11] T. Kato, S. Tanaka, K. Naka, Chem. Lett. 2015, 44, 1476.
[12] S. Tanaka, H. Imoto, T. Kato, K. Naka, Dalton Trans. 2016, 45, 7937.
[13] H. Imoto, M. Konishi, S. Nishiyama, H. Sasaki, S. Tanaka, T. Yumura,
K. Naka, Chem. Lett. 2019, 48, 1312.
[14] N. Glebko, T. M. Dau, A. S. Melnikov, E. V. Grachova, I. V. Solovyev, A.
Belyaev, A. J. Karttunen, I. O. Koshevoy, Chem. Eur. J. 2018, 24, 3021.
[15] P. Baranyai, G. Marsi, C. Jobbágy, A. Domján, L. Oláh, A. Deák, Dalton
Trans. 2015, 44, 13455.
[16] Fluorescence Measurements, Application to Bioscience, Measurement
Method, Series 3; Spectroscopical Society of Japan, Academic Publica-
tion Center.
[17] CrystalClear: Data Collection and Processing Software, Rigaku Corporation
(1998–2014). Tokyo 196–8666, Japan.
[18] SIR2011: M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascar-
ano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, R. Spagna,
J. Appl. Crystallogr. 2012, 45, 357.
[19] CrystalStructure 4.1: Crystal Structure Analysis Package, Rigaku Corpora-
tion (2000–2014). Tokyo 196–8666, Japan.
[20] SHELXL2013: G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112.
[21] SHELXL2016: G. M. Sheldrick, Acta Cryst. 2015, C27, 3.
[22] Olex2: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard,
H. Puschmann, J. Appl. Cryst. 2009, 42, 339
Keywords: Diarsine ligands · Gold · Aurophilicity ·
Mechanochromic luminescence · Thermochromic
luminescence
[1] W. Levason, G. Reid, Comprehensive Coordination Chemistry II (Eds.: J. A.
McCleverty, T. J. Meyer); Elsevier Science: Amsterdam, The Netherlands,
2004; Vol. 1, Chapter 1.12, pp 253.
[2] a) V. Farina, B. Krishnan, J. Am. Chem. Soc. 1991, 113, 9585; b) R. A. Baber,
S. Collard, M. Hooper, A. G. Orpen, P. G. Pringle, M. J. Wilkinson, R. L.
Wingad, Dalton Trans. 2005, 1491; c) Y. Tanabe, S. Kuriyama, K. Arashiba,
K. Nakajima, Y. Nishibayashi, Organometallics 2014, 33, 5295; d) H. Imoto,
C. Yamazawa, S. Tanaka, T. Kato, K. Naka, Chem. Lett. 2017, 46, 821; e) S.
Tanaka, M. Konishi, H. Imoto, M. Ishida, H. Furuta, K. Naka, Inorg. Chem.
2020, 59, 9587.
[3] a) S. H. Lim, M. M. Olmstead, J. C. Fettinger, A. L. Balch, Inorg. Chem.
2012, 51, 1925; b) H. Unesaki, T. Kato, S. Watase, K. Matsukawa, K. Naka,
Inorg. Chem. 2014, 53, 8270; c) H. Imoto, S. Tanaka, T. Kato, S. Watase, K.
Matsukawa, T. Yumura, K. Naka, Organometallics 2016, 35, 364; d) H.
Imoto, H. Sasaki, S. Tanaka, T. Yumura, K. Naka, Organometallics 2017,
36, 2605; e) T. Do, E. Hupf, E. Lork, J. F. Kogel, F. Mohr, A. Brown, R.
Toyoda, R. Sakamoto, H. Nishihara, S. Mebs, J. Beckmann, Eur. J. Inorg.
Chem. 2019, 647; f) K. R. England, S. H. Lim, L. M. C. Luong, M. M. Olms-
tead, A. L. Balch, Chem. Eur. J. 2019, 25, 874; g) M. F. Galimova, E. M.
Zueva, A. B. Dobrynin, A. I. Samigullina, R. R. Musin, E. I. Musina, A. A.
Karasik, Dalton Trans. 2020, 49, 482.
Received: August 27, 2020
Eur. J. Inorg. Chem. 2021, 217–222
222
© 2020 Wiley-VCH GmbH