G. Alonso-Nú ˜n ez et al. / Applied Catalysis A: General 419–420 (2012) 95–101
101
particularly marked if compared to results previously acquired on
industrial CoMo/Al O catalysts (0.49) [26]. As already observed by
Huang et al. [10] and Nava et al. [26], this depleted HYD character
is in fact related to a confinement effect of Co/MoS2 nanoparti-
cles inside the mesoporosity of the SBA-15 support. Indeed, the
localization of the particles inside the mesopores hinders the pos-
[2] H. Topsøe, B.S. Clausen, F.E. Massoth, in: J.R. Anderson, M. Boudart (Eds.),
Hydrotreating Catalysis and Science and Technology, vol. 11, Springer-Verlag,
Berlin/Heidelberg, 1996.
2
3
[
3] C.N. Satterfield, Heterogeneous Catalysis in Industrial Practice: Catalyst
Preparation and Manufacture, second edition, Krieger Publishing Co., 1996,
pp.87–129.
[
4] H. Shimada, Catal. Today 86 (2003) 17–29.
[
5] Y. Sakashita, Y. Araki, H. Shimada, Appl. Catal. A: Gen. 215 (2001) 101–110.
sibility for the DBT molecule to adsorb in a sterically demanding
[6] G. Berhault, M. Perez De la Rosa, A. Mehta, M. José-Yacaman, R.R. Chianelli,
Appl. Catal. A: Gen. 345 (2008) 80–88.
6
flat adsorption and therefore to be hydrogenated leading to an
[
7] M. Breysse, G. Berhault, S. Kasztelan, M. Lacroix, F. Maugé, G. Pérot, Catal. Today
6 (2001) 15–22.
enhancement of the DDS selectivity. This effect observed for SBA-
5 supported catalysts was also observed systematically for MoS2
44,45], Co/MoS2 [36,46] and Ni/MoS2 [47] nanoparticles loaded in
carbon mesopores. The development of a carbon mesoporous orga-
6
1
[
[8] Y.V. Joshi, P. Ghosh, M. Daage, W.N. Delgass, J. Catal. 257 (2008) 71–80.
[9] I. Eswaramoorthi, V. Sundaramurthy, N. Das, A.K. Dalai, J. Adjaye, Appl. Catal.
A: Gen. 339 (2008) 187–195.
10] Z.-D. Huang, W. Bensch, L. Kienle, S. Fuentes, G. Alonso, C. Ornelas, Catal. Lett.
122 (2008) 57–67.
[
nization led to depleted HYD selectivity whatever the MoS -based
2
catalysts to be formed.
[11] Y. Saih, K. Segawa, Appl. Catal. A: Gen. 353 (2009) 258–265.
[
[
12] M. Breysse, P. Afanasiev, C. Geantet, M. Vrinat, Catal. Today 86 (2003) 5–16.
13] T. Chiranjeevi, P. Kumar, S.K. Maity, M.S. Rana, G. Murali Dhar, T.S.R. Prasad Rao,
Microporous Mesoporous Mater. 44 (2001) 547–556.
In this respect, it is interesting to observe that similar HYD/DDS
ratios were obtained by Huang et al. [10] for which cobalt-
promoted MoS2 nanoparticles were mainly located inside the
SBA-15 channels even if inhomogeneously dispersed. Similarly, the
presence of Co-promoted MoS2 nanoparticles outside the SBA-15
channels [26] could explain the higher hydrogenating character
observed for CoMo/SBA-15 catalysts prepared using Mo oxide pre-
cursors and cobalt nitrate.
[14] G. Pérot, Catal. Today 86 (2003) 111–128.
[
[
15] R. Prada Silvy, F. Delannay, P. Grange, B. Delmon, Polyhedron 5 (1986) 195–198.
16] M. Wojciechowska, M. Pietrowski, B. Czajka, S. Łomnicki, Catal. Lett. 87 (2003)
153–157.
[17] R.D. Mi c´ i c´ , R.P. Marinkovi c´ -Nedu cˇ in, Z. Schay, I. Nagy, M. Hadnadev, E.E. Kiss,
Rev. Roum. Chim. 53 (2008) 629–634.
[
[
18] Z.D. Huang, W. Bensch, A. Lotnyk, L. Kienle, S. Fuentes, J. Bocarando, G. Alonso,
C. Ornelas, J. Mol. Catal. A: Chem. 323 (2010) 45–51.
19] S. Texier, G. Berhault, G. Pérot, V. Harlé, F. Diehl, J. Catal. 223 (2004)
4
04–418.
4
. Conclusions
[
[
20] S. Texier, G. Berhault, G. Pérot, F. Diehl, Appl. Catal. A: Gen. 293 (2005) 105–119.
21] J. Van Gestel, J. Léglise, J.C. Duchet, J. Catal. 145 (1994) 429–436.
[22] Y. Okamoto, K. Hioka, K. Arakawa, T. Fujikawa, T. Ebihara, T. Kubota, J. Catal.
268 (2009) 49–59.
23] H. Farag, A.N.A. El-Hendawy, K. Sakanishi, M. Kishida, I. Mochida, Appl. Catal.
B: Environ. 91 (2009) 189–197.
[24] B. Pawelec, R. Navarro, J.L.G. Fierro, P.T. Vasudevan, Appl. Catal. A: Gen. 168
(1998) 205–217.
25] E.J.M. Hensen, P.J. Kooyman, Y. Van der Meer, A.M. van der Kraan, V.H.J. de Beer,
J.A.R. van Veen, R.A. van Santen, J. Catal. 199 (2001) 224–235.
26] R. Nava, R.A. Ortega, G. Alonso, C. Ornelas, B. Pawelec, J.L.G. Fierro, Catal. Today
127 (2007) 70–84.
27] D. Valencia, T. Klimova, Catal. Today 166 (2011) 91–101.
28] L. Vradman, M.V. Landau, M. Herskowitz, V. Ezersky, M. Talianker, S. Nikitenko,
Y. Koltypin, A. Gedanken, J. Catal. 213 (2003) 163–175.
The synthesis of CoMo/SBA-15 catalysts was herein per-
formed using
a novel approach using already-sulfided Mo
[
and Co precursors, ammonium tetrathiomolybdate and cobalt
diethyldithiocarbamate allowing to homogeneously disperse a
high proportion of cobalt-promoted MoS2 nanoparticles inside
SBA-15 channels. Optimization of the activation parameters (tem-
perature of treatment, atmosphere) was subsequently carried out
in order to enhance catalytic properties. Compared to the classical
[
[
[
[
H /H S atmosphere, the use of a N /H atmosphere allows to obtain
2
2
2
2
better stabilized Co/MoS2 nanoparticles for which cobalt segrega-
tion under hydrodesulfurization conditions is limited. Moreover,
depending on the atmosphere used, the temperature of activation
differently influences the morphology of the active phase leading
to a rapid monodimensional sintering at high temperature under
N /H while its influence is hardly noticed under H /H S. The
combination of using already sulfided Co and Mo precursors with
the optimization of the activation procedure led to highly active
CoMo/SBA-15 catalysts. Finally, the localization of cobalt-promoted
[29] K. Ramanathan, S.W. Weller, J. Catal. 95 (1985) 249–259.
30] P.T. Vasudevan, S.W. Weller, J. Catal. 99 (1986) 235–238.
31] S. Fuentes, G. Diaz, F. Pedraza, H. Rojas, N. Rosas, J. Catal. 113 (1988)
[
[
5
35–539.
[32] J. Cruz-Reyes, M. Avalos-Borja, M.H. Farias, S. Fuentes, J. Catal. 137 (1992)
32–242.
2
2
2
2
2
[
[
33] P.T. Vasudevan, F. Zhang, Appl. Catal. A: Gen. 112 (1994) 161–173.
34] K. Wilkinson, M.D. Merchán, P.T. Vasudevan, J. Catal. 171 (1997) 325–328.
[35] Y. Yoneyama, C. Song, Catal. Today 50 (1999) 19–27.
[36] H. Nava, C. Ornelas, A. Aguilar, G. Berhault, S. Fuentes, G. Alonso, Catal. Lett. 86
(
2003) 257–265.
MoS nanoparticles inside the mesopores of the SBA-15 support led
to confinement effects and to more direct desulfurization selective
catalytic systems.
2
[
37] R. Huirache-Acu n˜ a, M.A. Albiter, C. Ornelas, F. Paraguay-Delgado, R. Martínez-
Sánchez, G. Alonso-Nu n˜ ez, Appl. Catal. A: Gen. 308 (2006) 134–142.
[38] F.J. Brieler, P. Grundmann, M. Fröba, L.M. Chen, P.J. Klar, W. Heimbrodt, H.A.K.
von Nidda, T. Kurz, A. Loidl, J. Am. Chem. Soc. 126 (2004) 797–807.
[
39] N. Mizuno, M. Misono, Chem. Rev. 98 (1998) 199–218.
Acknowledgments
[40] M. Perez De la Rosa, S. Texier, G. Berhault, A. Camacho, M.J. Yacaman, A. Mehta,
S. Fuentes, J.A. Montoya, F. Murrieta, R.R. Chianelli, J. Catal. 225 (2004) 288–299.
[
41] R.R. Chianelli, A.F. Ruppert, M.J. Yacaman, A. Vazquez-Zavala, Catal. Today 23
1995) 269–281.
42] S. Kasztelan, A. Wambeke, L. Jalowiecki, J. Grimblot, J.P. Bonnelle, J. Catal. 124
(1990) 12–21.
The authors acknowledge CONACyT for financial support
Project 26067), and PAPIIT project IN102509-3, the National Nano-
technology Laboratory (NANOTECH), Chihuahua, México and Red
de Nanociencias y Nanotecnología, the valuable technical assis-
tance from W. Antunez, C. Ornelas, and E. Torres and E. Aparicio.
(
(
[
[
[
43] M. Daage, R.R. Chianelli, J. Catal. 149 (1994) 414–427.
44] G. Alonso, G. Berhault, A. Aguilar, V. Collins, C. Ornelas, S. Fuentes, R.R. Chianelli,
J. Catal. 208 (2002) 359–369.
[
45] G. Alonso, M.H. Siadati, G. Berhault, A. Aguilar, R.R. Chianelli, Appl. Catal. A:
Gen. 263 (2004) 109–117.
References
[
46] L. Alvarez, J. Espino, C. Ornelas, J.L. Rico, M.T. Cortez, G. Berhault, G. Alonso, J.
Mol. Catal. A: Chem. 210 (2004) 105–117.
◦
[47] L. Alvarez, G. Berhault, G. Alonso, Catal. Lett. 125 (2008) 35–45.
[1] CE bulletin n 715/2007 of the European parliament and council, 20/06/07.