ACS Catalysis
Page 6 of 9
L., Steel, P. G., Marder, T. B. Zinc-catalyzed borylation of primary,
now is sketchy and the detailed version needs further efforts to
elucidate25.
secondary and tertiary alkyl halides with alkoxy diboron reagents at room
temperature. Angew. Chem. Int. Ed. 2014, 53, 1799-1803. (g) Atack, T. C.,
Cook, S. P. Manganese-catalyzed borylation of unactivated alkyl chlorides.
J. Am. Chem. Soc. 2016, 138, 6139-6142. (h) Cheng, Y., Mück-Lichtenfeld,
C., Studer, A. Metal-free radical borylation of alkyl and aryl iodides. Angew.
Chem. Int. Ed. 2018, 57, 16832-16836. (i) Wu, J., He, L., Noble, A.,
Aggarwal, V. K. Photoinduced deaminative borylation of alkylamines. J.
Am. Chem. Soc. 2018, 140, 10700-10704. (j) Friese, F. W., Studer, A.
Deoxygenative borylation of secondary and tertiary alcohols. Angew. Chem.
Int. Ed. 2019, 58, 9561-9564.
1
2
3
4
5
6
7
8
CONCLUSION
In summary, we have developed an iron-catalyzed regiodivergent
hydroboration methodology that can be applied to aliphatic
terminal alkenes. The regioselectivity was shown to be determined
by the solvent and base used, and further studies revealed that the
iron-boron alkoxide ate salt was the vital intermediate for
Markovnikov regioselectivity. We believe that these results provide
crucial examples that expand our understanding of mechanisms
involving iron catalysis. The phosphine- and carbene-ligand-free
reaction features abundant, low cost, and low-toxicity iron catalyst,
and offers wide scope with respect to terminal alkenes, which
provides an efficient and sustainable method for synthesizing all
primary, secondary, and tertiary alkyl borates. Further studies on
iron-catalyzed alkene boration functionalization and related
mechanism are under way.
4. Brown, H. C., Rao, B. C. S. A new powerful reducing agent-sodium
borohydride in the presence of aluminum chloride and other polyvalent
metal halides. J. Am. Chem. Soc. 1956, 78, 2582-2588.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
5. (a) Brown, H. C. Hydroboration, Benjamin/cummings, reading,
Massachusetts, 1980, 2nd edn. (b) Burgess, K., Ohlmeyer, M. J. Transition-
metal promoted hydroborations of alkenes, emerging methodology for
organic transformations. Chem. Rev. 1991, 91, 1179-1191. (c) Obligacion,
J. V., Chirik, P. J. Earth-abundant transition metal catalysts for alkene
hydrosilylation and hydroboration. Nat. Rev. Chem. 2018, 2, 15-34.
6. (a) Fan, W., Li, L., Zhang, G. Branched-selective alkene hydroboration
catalyzed by earth-abundant metals. J. Org. Chem. 2019, 84, 5987-5996. (b)
Hayashi, T., Matsumoto Y., Ito, Y. Catalytic asymmetric hydroboration of
styrenes. J. Am. Chem. Soc. 1989, 111, 3426-3428. (c) Zhang, G., Scott, B.
L., Hanson, S. K. Mild and homogeneous cobalt-catalyzed hydrogenation
of C=C, C=O, and C=N bonds. Angew. Chem. Int. Ed. 2012, 51, 12102-
12106. (d) Noh, D., Chea, H., Ju, J., Yun, J. Highly regio- and
enantioselective copper-catalyzed hydroboration of styrenes. Angew. Chem.
Int. Ed. 2009, 48, 6062-6064. (e) MacNair, A. J., Millet, C. R. P., Nichol,
G. S., Ironmonger, A., Thomas, S. P. Markovnikov-selective, activator-free
iron-catalyzed vinylarene hydroboration. ACS Catal. 2016, 6, 7217-7221. (f)
Zhang, G., Zeng, H., Wu, J., Yin, Z., Zheng, S., Fettinger, J. C. Highly
selective hydroboration of alkenes, ketones and aldehydes catalyzed by a
well-defined manganese complex. Angew. Chem. Int. Ed. 2016, 55, 14369-
14372. (g) Rauch, M., Ruccolo, S., Parkin, G. Synthesis, structure, and
reactivity of a terminal magnesium hydride compound with a carbatrane
motif, [TismPriBenz]MgH: a multifunctional catalyst for hydrosilylation and
hydroboration. J. Am. Chem. Soc. 2017, 139, 13264-13267.
7. (a) Evans, D. A., Fu, G. C. Amide-directed, iridium-catalyzed
hydroboration of olefins: documentation of regio- and stereochemical
control in cyclic and acyclic systems. J. Am. Chem. Soc. 1991, 113, 4042-
4043. (b) Smith, S. M., Takacs, J. M. Amide-directed catalytic asymmetric
hydroboration of trisubstituted alkenes. J. Am. Chem. Soc. 2010, 132, 1740-
1741. (c) Smith, S. M., Thacker, N. C., Takacs, J. M. Efficient amide-
directed catalytic asymmetric hydroboration. J. Am. Chem. Soc. 2008, 130,
3734-3735. (d) Shoba, V. M., Thacker, N. C., Bochat, A. J., Takacs, J. M.
Synthesis of chiral tertiary boronic esters by oxime-directed catalytic
asymmetric hydroboration. Angew. Chem. Int. Ed. 2016, 55, 1465-1469. (e)
Chakrabarty, S., Takacs, J. M. Synthesis of chiral tertiary boronic esters:
phosphonate-directed catalytic asymmetric hydroboration of trisubstituted
alkenes. J. Am. Chem. Soc. 2017, 139, 6066-6069. (f) Hoang, G. L., Takacs,
J. M. Enantioselective γ-borylation of unsaturated amides and
stereoretentive Suzuki-Miyaura cross-coupling. Chem. Sci. 2017, 8, 4511-
4516. (g) Bochat, A. J., Shoba, V. M., Takacs, J. M. Ligand-controlled
regiodivergent enantioselective rhodium-catalyzed alkene hydroboration.
Angew. Chem. Int. Ed. 2019, 58, 9434-9438. (h) Wang, G., Liang, X., Chen,
L., Gao, Q., Wang, J.-G., Zhang, P., Peng, Q., Xu, S. Iridium-Catalyzed
Distal Hydroboration of Aliphatic Internal Alkenes. Angew. Chem. Int. Ed.
2019, 58, 8187-8191.
ASSOCIATED CONTENT
Supporting Information
This information is available free of charge on the ACS
Publications website.
Supplementary data, experimental procedures, and analytical data
for all new compounds.
AUTHOR INFORMATION
Corresponding Author
Note
The authors declare no competing financial interest.
ACKNOWLEDGEMENT
The authors thank the NSFS (21901059, 21978067, 21702119), Natural
Science Foundation of Hebei Province (B2018208079, B2018208093) and
two Start-up Grants from Hebei University of Science and Technology for
Wei Su and Qiushi Cheng.
REFERENCES
1. (a) Chemler, S. R., Trauner, D., Danishefsky, S. J. The B-alkyl Suzuki-
Miyaura cross-coupling reaction: development, mechanistic study, and
applications in natural product synthesis. Angew. Chem. Int. Ed. 2001, 40,
4544-4568. (b) Jana, R., Pathak, T. P., Sigman, M. S. Advances in transition
metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-
organometallics as reaction partners. Chem. Rev. 2011, 111, 1417-1492.
2. Borissenko, L., Groll, M. 20S Proteasome and its inhibitors:ꢀ
crystallographic knowledge for drug development. Chem. Rev. 2007, 107,
687-717.
8. Xi, Y., Hartwig, J. F. Diverse asymmetric hydrofunctionalization of
aliphatic internal alkenes through catalytic regioselective hydroboration. J.
Am. Chem. Soc. 2016, 138, 6703-6706.
9. Iwamoto, H., Kubota, K., Ito, H. Highly selective Markovnikov
hydroboration of alkyl-substituted terminal alkenes with a phosphine-
copper(I) catalyst. Chem. Commun. 2016, 52, 5916-5919.
10. Iwamoto, H., Imamoto, T., Ito, H. Computational design of high-
performance ligand for enantioselective Markovnikov hydroboration of
aliphatic terminal alkenes. Nat. Commun. 2018, 9, 2290.
11. Kerchner, H. A. Montgomery, J. Synthesis of secondary and tertiary
alkylboranes via formal hydroboration of terminal and 1,1-disubstituted
alkenes. Org. Lett. 2016, 18, 5760-5763.
3. (a) Li, C., Wang, J., Barton, L. M., Yu, S., Tian, M., Peters, D. S., Kumar,
M., Yu, A. W., Johnson, K. A., Chatterjee, A. K., Yan, M., Baran, P. S.
Decarboxylative borylation. Science 2017, 356, eaam7355. (b) Fawcett, A.,
Pradeilles, J., Wang, Y., Mutsuga, T., Myers, E. L., Aggarwal, V. K.
Photoinduced decarboxylative borylation of carboxylic acids. Science 2017,
357, 283-286. (c) Yang, C.-T., Zhang, Z.-Q., Tajuddin, H., Wu, C.-C., Liang,
J., Liu, J.-H., Fu, Y., Czyzewska, M., Steel, P. G., Marder, T. B., Liu, L.
Alkylboronic esters from copper-catalyzed borylation of primary and
secondary alkyl halides and pseudohalides. Angew. Chem. Int. Ed. 2012, 51,
528-532. (d) Ito, H., Kubota, K. Copper(I)-catalyzed boryl substitution of
unactivated alkyl halides. Org. Lett. 2012, 14, 890-893. (e) Dudnik, A. S.,
Fu, G. C. Nickel-catalyzed coupling reactions of alkyl electrophiles,
including unactivated tertiary halides, to generate carbon-boron bonds. J.
Am. Chem. Soc. 2012, 134, 10693-10697. (f) Bose, S. K., Fucke, K., Liu,
12. Smith, J. R., Collins, B. S. L., Hesse, M. J., Graham, M. A., Myers, E.
L., Aggarwal, V. K. Enantioselective rhodium(III)-catalyzed markovnikov
ACS Paragon Plus Environment