8924
Y. Tomita et al. / Tetrahedron Letters 48 (2007) 8922–8925
Table 2. Trifluoromethylation of various substrates
104, 1–16; (f) Hiyama, T.; Kanie, K.; Kusumoto, T.;
Morizawa, Y.; Shimizu, M. Organofluorine Compounds;
Springer: Berlin, 2000; (g) Enantiocontrolled Synthesis of
Fluoro-Organic Compounds; Soloshonok, V. A., Ed.;
Wiley: Chichester, 1999; (h) Asymmetric Fluoroorganic
Chemistry, Synthesis, Applications, and Future Directions;
Ramachandran, P. V., Ed.; American Chemical Society:
Washington, DC, 2000; (i) Organofluorine Chemistry;
Chambers, R. D., Ed.; Springer: Berlin, 1997; (j) Iseki,
K. Tetrahedron 1998, 54, 13887–13914; (k) Biomedical
Frontiers of Fluorine Chemistry; Ojima, I., McCarthy, J.
R., Welch, J. T., Eds.; American Chemical Society:
Washington, DC, 1996; (l) Smart, B. E., Ed. Chem. Rev.
1996, 96, 1555–1824 (Thematic issue of fluorine chemis-
try); (m) Organofluorine Chemistry: Principles and Com-
mercial Applications; Banks, R. E., Smart, B. E., Tatlow, J.
C., Eds.; Plenum Press: New York, 1994; (n) Synthetic
Fluorine Chemistry; Olah, G. A., Prakash, G. K. S.,
Chambers, R. D., Eds.; Wiley: New York, 1992.
CF3I (>5 eq.)
Et3B (1.0 eq.)
air (0.5 ml)
Et2Zn (1.0 eq.)
0 °C
30 min
OTMS
R3
O
MeLi (1.0 eq.)
THF / 0
CF3
R2 R3
R1
R1
°
C
-78
20 h
°C
R2
12-Cr-4 (1.0 eq.)
30 min
Entry Si enol ether
Product
Yielda (%) deb (%)
1
2
57
(70)c
OTMS
O
CF3
OTMS
O
O
3
4
5
80
10
14
14
Ph
Ph
CF3
(86)c
43d
OTMS
6
7
8
56
(78)c
42e
CF3
CF3
2. M–F interaction plays an important role in defluorination
of a-CF3 carbonyl compounds (a) Schlosser, M. In
Organometallics in Synthesis—A Manual; Schlosser, M.,
Ed.; John Wiley & Sons: Chichester, 1994; pp 1–166; (b)
Murphy, E. F.; Murugavel, R.; Roesky, H. W. Chem. Rev.
1997, 97, 3425–3468; (c) Plenio, H. Chem. Rev. 1997, 97,
3363–3384, and references cited therein.
OTMS
O
O
9
10
11
50
40d
33e
12
13
14
15
74
OTMS
n
n
C4H9
CF3
(86)c
35d
64e
n
C4H9 C5H11
3. Seebach, D. Angew. Chem. Int., Ed. Engl. 1988, 27, 1624–
1654.
n
C5H11
4. Trifluoromethylation of lithium enolate of hindered
imides (only exception for the use of lithium enolate): (a)
Iseki, K.; Nagai, T.; Kobayashi, Y. Tetrahedron Lett.
1993, 34, 2169–2170; (b) Iseki, K.; Nagai, T.; Kobayashi,
Y. Tetrahedron: Asymmetry 1994, 5, 961–974, They have
succeeded in trifluoromethylation by adopting Evans
oxazolidinones with bulky substitutent at a position to
suppress defluorination.
a Determined by 19F NMR analysis using BTF as an internal standard.
b Determined by 19F NMR analysis.
c With 12-crown-4 (1.0 equiv).
d With the lithium enolate.
e With the titanate enolate with Ti(OPri)4 (1.6 equiv).
5. Perfluoroalkylation of silyl and germyl enol ethers of
esters and ketones: (a) Miura, K.; Taniguchi, M.; Nozaki,
K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1990, 31,
6391–6394; (b) Miura, K.; Takeyama, Y.; Oshima, K.;
Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 1542–1553,
Perfluoroalkylation of silyl enol ethers provided the
products in good yields except for trifluoromethylation.
Trifluoromethylation of ketone germyl enol ethers pro-
ceeds in good yield; (c) Quite recently, we reported that the
addition of diethylzinc to the ketone silyl enol ethers led to
good yields even in the trifluoromethylation: Mikami, K.;
Tomita, Y.; Ichikawa, Y.; Amikura, K.; Itoh, Y. Org.
Lett. 2006, 8, 4671–4673.
O
Et2Zn (1.1 eq.)
LDA (1.1 eq.)
THF / -78 °C
-78 °C
30 min
1 h
TMSO
CF3I (3.7 eq.)
Et3B (1.0 eq.)
air
O
CF3
-40 °C (1 h) ~ 0 °C (3 h)
TMSO
45%, α:β=3:1
`
6. Trifluoromethylation of enamines: (a) Cantacuzene, D.;
Figure 3. Trifluoromethylation of TMS-protected androsterone.
Wakselman, C.; Dorme, R. J. Chem. Soc., Perkin Trans. 1
1977, 1365–1371; (b) Kitazume, T.; Ishikawa, N. J. Am.
Chem. Soc. 1985, 107, 5186–5191.
In conclusion, we have developed radical trifluoro-
methylation of zincate-type enolates, particularly cyclo-
pentanones; CF3 substituent can now be introduced into
various ketones in higher yields.
7. There are some reports on trifluoromethylation using
CF3þ: (a) Yagupol’skii, L. M.; Kondratenko, N. V.;
Timofeeva, G. N. J. Org. Chem. USSR 1984, 20, 115–118;
(b) Umemoto, T.; Ishihara, S. J. Am. Chem. Soc. 1993,
115, 2156–2164; (c) Umemoto, T.; Adachi, K. J. Org.
Chem. 1994, 59, 5692–5699.
8. Also see: Yoshida, M.; Ohkoshi, M.; Iyoda, M. Chem.
Lett. 2000, 804–805, However, they reported the addition
of perfluoroalkyl radical to a-chlorostyrenes giving even-
tually fluoroalkylated a,b-unsaturated ketones.
9. Titanate enolates: (a) Itoh, Y.; Mikami, K. Org. Lett.
2005, 7, 649–651; (b) Itoh, Y.; Mikami, K. J. Fluorine
Chem. 2006, 127, 539–544.
10. Lithium enolates: (a) Itoh, Y.; Mikami, K. Org. Lett.
2005, 7, 4883–4885; (b) Itoh, Y.; Mikami, K. Tetrahedron
2006, 62, 7199–7203.
References and notes
1. (a) Soloshonok, V. A.; Mikami, K.; Yamazaki, T.; Welch,
J. T.; Honek, J. F. Current Fluoroorganic Chemistry; ACS
Symp. 949, 2006; (b) Uneyama, K. Organofluorine Chem-
istry; Blackwell: Oxford, 2006; (c) Shimizu, M.; Hiyama,
T. Angew. Chem., Int. Ed. 2005, 44, 214–231; (d) Ma,
J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119–6146; (e)
Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. Rev. 2004,