10.1002/chem.202001564
Chemistry - A European Journal
FULL PAPER
naphthaloylenebenzene moiety in the back was prepared for the
first time. Based on the special ligand structure, a Ru(II)
photosensitizer (Rubiipo), also verified by single crystal X-ray
diffraction analysis, with some unique properties was formed. For
instance, Rubiipo shows a reversible redox chemistry (i.e. four
reductions and one oxidation) as well as a strong and broad
absorption in the visible with two maxima at 411 and 460 nm,
respectively. More importantly, Rubiipo possesses a clear
emission at 623 nm with very long-lived excited states of 1.7 and
24.7 µs in acetonitrile in the absence of oxygen. Interestingly, the
emission intensity and lifetimes are drastically decreased (by a
factor of >100) by O2, which indicates a high oxygen sensitivity of
this complex. In the future, temperature-dependent emission,
emission lifetime and spectroelectrochemical measurements are
planned, to clarify the nature of the excited states further. In
addition, a detailed investigation of the oxygen sensing ability of
Rubiipo will be assessed by Stern-Volmer quenching
experiments.
Keywords: ruthenium photosensitizer • extended π-system •
electron storage • excited state properties • singlet oxygen
evolution
[1]
M. H. Shaw, J. Twilton, D. W. C. MacMillan J. Org. Chem. 2016, 81 (16),
6898–6926.
[2]
[3]
S. Malzkuhn, O. S. Wenger Coord. Chem. Rev. 2018, 35952–56.
Q. M. Kainz, C. D. Matier, A. Bartoszewicz, S. L. Zultanski, J. C. Peters,
G. C. Fu Science 2016, 351 (6274), 681.
[4]
J. Twilton, C. C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C.
MacMillan Nat. Rev. Chem. 2017, 1 (7), 0052.
[5]
[6]
R. Eisenberg Science 2009, 324 (5923), 44.
P. D. Frischmann, K. Mahata, F. Würthner Chem. Soc. Rev. 2013, 42 (4),
1847–1870.
[7]
[8]
[9]
S. Berardi, S. Drouet, L. Francàs, C. Gimbert-Suriñach, M. Guttentag, C.
Richmond, T. Stoll, A. Llobet Chem. Soc. Rev. 2014, 43 (22), 7501–7519.
Y.-J. Yuan, Z.-T. Yu, D.-Q. Chen, Z.-G. Zou Chem. Soc. Rev. 2017, 46
(3), 603–631.
T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M.
Korbelik, J. Moan, Q. Peng J. Natl. Cancer Inst. 1998, 90 (12), 889–905.
[10] P. R. Ogilby Chem. Soc. Rev. 2010, 39 (8), 3181–3209.
[11] D. Van Straten, V. Mashayekhi, S. H. De Bruijn, S. Oliveira, J. D.
Robinson Cancers 2017, 9 (2),
Most importantly, beside potential applications as an oxygen
sensor Rubiipo is able to produce singlet oxygen under visible
light irradiation with very fast kinetics. Therefore, the study of
further applications of the Rubiipo photosensitizer as well as of
other transition metal complexes using the new biipo ligand are
currently ongoing.
[12] S. Monro, K. L. Colón, H. Yin, J. Roque, P. Konda, S. Gujar, R. P.
Thummel, L. Lilge, C. G. Cameron, S. A. McFarland Chem. Rev. 2019,
119 (2), 797–828.
[13] M. C. DeRosa, R. J. Crutchley Coord. Chem. Rev. 2002, 233-234351–
371.
[14] C. Mari, V. Pierroz, S. Ferrari, G. Gasser Chem. Sci. 2015, 6 (5), 2660–
2686.
[15] G. Shi, S. Monro, R. Hennigar, J. Colpitts, J. Fong, K. Kasimova, H. Yin,
R. DeCoste, C. Spencer, L. Chamberlain, A. Mandel, L. Lilge, S. A.
McFarland Coord. Chem. Rev. 2015, 282-283, 127-138.
[16] F. Heinemann, J. Karges, G. Gasser Acc. Chem. Res. 2017, 50 (11),
2727–2736.
Experimental Section
CCDC 1993565 (Rubiipo) contains the supplementary
crystallographic data for this paper. This data is provided free of
charge by The Cambridge Crystallographic Data Centre.
[17] R. Konduri, N. R. de Tacconi, K. Rajeshwar, F. M. MacDonnell J. Am.
Chem. Soc. 2004, 126 (37), 11621–11629.
[18] S. Singh, N. R. de Tacconi, N. R. G. Diaz, R. O. Lezna, J. Muñoz Zuñiga,
K. Abayan, F. M. MacDonnell Inorg. Chem. 2011, 50 (19), 9318–9328.
[19] S. Karlsson, J. Boixel, Y. Pellegrin, E. Blart, H.-C. Becker, F. Odobel, L.
Hammarström Faraday Discuss. 2012, 155 (0), 233–252.
[20] J. M. Aslan, D. J. Boston, F. M. MacDonnell Chem. Eur. J. 2015, 21 (48),
17314–17323.
For further details see the Supporting information: Experimental
and synthetic details, further crystallographic data, NMR, MS, IR,
UV/vis, and emission spectra, photostability measurements,
singlet oxygen evolution measurements, cyclic voltammograms,
emission lifetime analysis, transient absorption spectra, TD-DFT
calculation data.
[21] L. Hammarström Acc. Chem. Res. 2015, 48 (3), 840–850.
[22] Y. Zhang, P. Traber, L. Zedler, S. Kupfer, S. Gräfe, M. Schulz, W. Frey,
M. Karnahl, B. Dietzek Phys. Chem. Chem. Phys. 2018, 20 (38), 24843–
24857.
[23] E. H. Yonemoto, R. L. Riley, Y. I. Kim, S. J. Atherton, R. H. Schmehl, T.
E. Mallouk J. Am. Chem. Soc. 1992, 114 (21), 8081–8087.
[24] A. Lavie-Cambot, C. Lincheneau, M. Cantuel, Y. Leydet, N. D.
McClenaghan Chem. Soc. Rev. 2010, 39 (2), 506–515.
[25] D. S. Tyson, C. R. Luman, X. Zhou, F. N. Castellano Inorg. Chem. 2001,
40 (16), 4063–4071.
Acknowledgements
Y.Y., M.K. and S.T. grateful acknowledge the German Science
Foundation (DFG, Priority Program SPP 2102 “Light-controlled
reactivity of metal complexes” (KA 4671/2-1 and TS 330/4-1) and
the DFG project TS 330/3-1) for funding. S.R. is thankful for
financial support from the DFG within the collaborative research
center TRR 234 Catalight. J.B. gratefully acknowledges the
Fonds der Chemischen Industrie (FCI) for a Kekulé-Stipendium.
The authors acknowledge support by the state of Baden-
Württemberg through bwHPC and by the DFG (INST 40/467-1
FUGG). The authors also thank Bernd Maier, Martin Rentschler
and Julian Bösking for their synthetic work and Dr. Dieter Sorsche
for providing X-ray data.
[26] D. E. Polyansky, E. O. Danilov, F. N. Castellano Inorg. Chem. 2006, 45
(6), 2370–2372.
[27] J. Hankache, O. S. Wenger Phys. Chem. Chem. Phys. 2012, 14 (8),
2685–2692.
[28] M. Schulze, A. Steffen, F. Würthner Angew. Chem. Int. Ed. 2015, 54,
1570-1573.
[29] H. Langhals Heterocycles 1995, 40 (1), 477–500.
[30] A. Hermann, K. Müllen Chem. Lett. 2006, 35 (9), 978-985.
[31] T. Weil, T. Vosch, J. Hofkens, K. Peneva, K. Müllen Angew. Chem. Int.
Ed. 2010, 49 (48), 9068-9093.
This article is protected by copyright. All rights reserved.