1050
F. Ulgheri et al. / Tetrahedron Letters 45 (2004) 1047–1050
Hashimoto, M.; Katoh, T.; Terashima, S. Tetrahedron
1996, 52, 1177–1194, and references cited therein.
1H), 4.08 (d, J ¼ 9:0, 1H), 3.99 (dd, J ¼ 8:4, 6.0, 1H), 3.85
(m, 1H), 3.71 (dd, J ¼ 8:1, 5.4, 1H), 1.33 (s, 3H), 1.22 (s,
3H), 0.81 (s, 9H), 0.22 (s, 3H), 0.14 (s, 3H). 13C NMR
(75.4 MHz, CDCl3) d 171.8, 157.8, 136.4, 135.9, 129.2,
128.9, 128.1, 127.9, 127.4, 127.1, 109.5, 75.7, 72.9, 68.5,
9. 5-(Alditol-1-C-yl)-hydantoin derivatives have been syn-
thesized as intermediates for the synthesis of spirohydan-
toins or for their potential biological activity. See Refs. 7c,
8b and (a) Dziedzic, B.; Korohoda, M. J.; Rydzik, E. Pol.
J. Chem. 1995, 69, 90–94; (b) Matsumoto, M.; Kirihara,
M.; Yoshino, T.; Katoh, T.; Terashima, S. Tetrahedron
Lett. 1993, 34, 6289–6292.
10. (a) Koos, M.; Steiner, B.; Langer, V.; Gyepesova, D.;
Durik, M. Carbohydr. Res. 2000, 328, 115–126; (b) Keil,
O.; Schneider, M. P.; Rasor, J. P. Tetrahedron: Asymmetry
1995, 6, 1257–1260; For the use of hydantoin chiral
derivatives as glycine anion equivalents for the synthesis of
a-alkyl and a,a-dialkyl a-amino acids see: Leon-Romo, J.
L.; Virues, C. I.; Avina, J.; Regla, I.; Juaristi, E. Chirality
2002, 14, 144–150.
11. (a) Isono, K. J. Antibiot. 1988, 41, 1711–1739; For
example, syntheses see: (b) Casiraghi, G.; Rassu, G.;
Spanu, P.; Pinna, L. Tetrahedron Lett. 1994, 35, 2423–
2426; (c) Rassu, G.; Zanardi, F.; Cornia, M.; Casiraghi, G.
J. Chem. Soc., Perkin Trans. 1 1994, 2431–2437; (d)
Dondoni, A.; Franco, S.; Merchan, F. L.; Merino, P.;
Tejero, T. Tetrahedron Lett. 1993, 34, 5479–5482; (e)
Veeresa, G.; Datta, A. Tetrahedron Lett. 1998, 39, 119–
122, and references cited therein.
12. Compound 4: 1H NMR (300 MHz, CDCl3) d 7.42–7.20
(m, 10H), 4.66 (s, 2H), 4.52 (s, 2H), 3.68 (s, 2H). 13C NMR
(75.4 MHz, CDCl3) d 169.3, 156.4, 135.9, 135.2, 128.8,
128.6, 128.5, 128.0, 127.8, 48.9, 46.6, 42.5. White solid, mp
46–48 °C.
62.0, 46.7, 42.8, 26.3, 25.8, 25.3, 24.8, 17.8, )4.0, )5.3.
20
Colourless oil ½aꢀ )35 (c 0.5, CHCl3).
D
15. Crystallographic data for 6: C23H26N2O5; crystal system:
monoclinic; space group: P21. Unit cell parameters: a ¼
ꢁ
14:157ð3Þ, b ¼ 5:469ð2Þ, c ¼ 14:598ð3Þ A, b ¼ 110:40ð4Þ°.
3
ꢁ
Z ¼ 2. V ¼ 1059:4ð5Þ A . R1 ¼ 0:0501 [on F P 4rðF Þ];
wR2 ¼ 0:1389 (on F 2, all data). Data/restraints/parame-
ters: 2119/13/247. Goodness-of-fit on F 2 ¼ 1:018.
16. Crystallographic data for this structure have been depos-
ited with the Cambridge Crystallographic Data Centre as
supplementary publication no. CCDC 220239. Copies of
the data can be obtained free of charge on application to
CCDC 12 Union Road, Cambridge CB2 1EZ (Fax: +44-
17. The diastereoselectivity observed can be explained by the
preferential formation of the cyclic transition state TS1
over TS2.
Ph
O
N
O
H
O
N
Ph
O
H
M
N
H
Ph
M
O
O
Ph
N
H
O
O
O
H
O
13. Only a marginal amount (<7%) of the other two dia-
stereomers were detected by NMR analysis. Compound 6:
1H NMR (300 MHz, CDCl3) d 7.40–7.22 (m, 10H), 5.02 (d,
J ¼ 15:3, 1H), 4.69 and 4.64 (AB system, JAB ¼ 14:7, 2H),
4.36 (ddd, J ¼ 8:7, 6.0, 4.0, 1H), 4.27 (d, J ¼ 15:3, 1H),
4.11 (d, J ¼ 2:1, 1H), 4.02 (dd, J ¼ 8:7, 6.0, 1H), 3.93 (dd,
J ¼ 9:0, 4.2, 1H), 3.93–3.87 (m, 1H), 2.33 (d, J ¼ 5:4, 1H,
OH), 1.22 (s, 3H), 1.21 (s, 3H). 13C NMR (75.4 MHz,
CDCl3) d 170.2, 157.3, 135.8, 129.2, 128.8, 128.5, 127.9,
TS1
TS2
Aldol reactions between a-chiral aldehydes and E(O)-
enolates preferentially give the Felkin-type adduct by
abiding both the Felkin–Anh rule and the Zimmerman–
Traxler model (a) Mengel, A.; Reiser, O. Chem. Rev. 1999,
99, 1191–1223; (b) Roush, W. R. J. Org. Chem. 1991, 56,
4151–4157; (c) Gennari, C.; Vieth, S.; Comotti, A.;
Vulpetti, A.; Goodman, J. M.; Paterson, I. Tetrahedron
1992, 48, 4439–4458.
109.2, 74.2, 71.1, 67.0, 61.4, 45.5, 42.8, 26.8, 25.0. White
20
solid, mp 182–184 °C, ½aꢀ +44 (c 0.6, CHCl3).
D
14. Compound 8: 1H NMR (300 MHz, CDCl3) d 7.42–7.20
(m, 10H), 5.21 (d, J ¼ 15:3, 1H), 4.68 and 4.62 (AB
system, JAB ¼ 14:1, 2H), 4.32–4.23 (m, 1H), 4.13 (d,
J ¼ 15:3, 1H), 4.06 (d, J ¼ 1:5, 1H), 4.04 (dd, J ¼ 8:7,
3.3, 1H), 4.04–4.00 (m, 1H), 3.83 (dd, J ¼ 8:7, 4.5, 1H),
1.16 (s, 3H), 1.15 (s, 3H), 0.79 (s, 9H), 0.10 (s, 3H), )0.10
(s, 3H). 13C NMR (75.4 MHz, CDCl3) d 169.9, 155.8,
136.0, 135.5, 129.3, 128.9, 128.4, 128.1, 127.6, 109.7, 75.0,
18. The
D-glycero-L-talo configuration of compound 11 was
1
proposed based upon H NMR spectral data and reason-
able assumptions based upon mechanistic analogy. Com-
pound 11: 1H NMR (300 MHz, CDCl3) d 7.42–7.22 (m,
10H), 5.05 (d, J ¼ 15:3, 1H), 4.65 (d, J ¼ 2:7, 2H), 4.41–
4.43 (m, 1H), 4.28 (d, J ¼ 15:3, 1H), 4.18–4.08 (m, 2H),
4.40–3.75 (m, 2H), 3.83 (dd, J ¼ 8:7, 6.6, 1H), 3.50 (d,
J ¼ 2:7, 1H), 1.39 (s, 3H), 1.35 (s, 3H), 1.20 (s, 3H), 1.13
(s, 3H). 13C NMR (75.4 MHz, CDCl3) d 170.2, 157.3,
136.0, 135.8, 128.9, 128.4, 128.0, 127.6, 110.6, 110.2, 80.2,
73.0, 67.0, 61.9, 44.6, 42.6, 26.5, 25.9, 25.4, 17.9, )1.5,
20
)2.5. Colourless oil ½aꢀ +34 (c 0.7, CHCl3).
D
1
Compound 9: H NMR (300 MHz, CDCl3) d 7.50–7.30
(m, 10H), 4.96 (d, J ¼ 15:9, 1H), 4.69 and 4.64 (AB
75.1, 74.3, 72.3, 65.3, 61.4, 45.5, 42.5, 26.8, 26.3, 25.8, 24.5.
Light yellow oil ½aꢀ )24 (c 0.5, CHCl3).
20
D
system, JAB ¼ 14:4, 2H), 4.41 (d, J ¼ 15:3, 1H), 4.22 (s,