2
116
T. Ohura et al. / Chemosphere 70 (2008) 2110–2117
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A.,
4
. Conclusion
Cheeseman, J.R., Zakrzewski, V.G., Montgomery Jr., J.A., Strat-
mann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D.,
For ClPAHs, the photodegradability varied greatly
¨
Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi,
according to the skeleton of PAHs. As far as relatively
high-molecular weight PAHs are concerned, such as Fluor,
BaA, and BaP, the chloroderivatives were more stable
toward photolysis. The photoproducts analysis of ClPhes
suggested that oxidation occurs at positions of the highest
frontier electron density. Furthermore, the QSPR models
for direct photolysis half-lives and average quantum yields
of 11 ClPAHs and 5 parent PAHs in cyclohexane solution
under irradiation by a high-pressure mercury lamp was
developed, and shown to have good predictive abilities.
The significant factors affecting photolytic half-lives of
the compounds were ELUMO+1, total energy, and surface
area values, while ELUMO, ELUMO ꢀ EHOMO, and total
energy control the photolysis quantum yields.
M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S.,
Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K.,
Salvador, P., Dannenberg, J.J., Malick, D.K., Rabuck, A.D., Ragh-
avachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G.,
Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Kom a´ romi, I.,
Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A.,
Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W.,
Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C.,
Head-Gordon, M., Replogle, E.S., Pople, J.A., 1998. Gaussian 98.
Gaussian, Inc., Pittsburgh, PA.
Jang, M., McDow, S.R., 1995. Benz[a]anthracene photodegradation in the
presence of known organic constituents of atmospheric aerosols.
Environ. Sci. Technol. 29, 2654–2660.
Jang, M., McDow, S.R., 1997. Products of benz[a]anthracene photodeg-
radation in the presence of known organic constituents of atmospheric
aerosols. Environ. Sci. Technol. 31, 1046–1053.
Kamens, R.M., Guo, Z., Fulcher, J.N., Bell, D.A., 1988. Influrnce of
humidity, sunlight, and temperature on the daytime decay of polyar-
omatic hydrocarbons on atmospheric soot particles. Environ. Sci.
Technol. 22, 103–108.
Acknowledgements
This work was supported, in part, by a Grant-in-aid for
Young Scientists (B) from the Japan Society for the Pro-
motion of Science (Project No. 14780416, to T.O).
Kim, M., O’Keefe, P.W., 2000. Photodegradation of polychlorinated
dibenzo-p-dioxins and debenzofurans in aqueous solutions and in
organic solvents. Chemosphere 41, 793–800.
Kitazawa, A., Amagai, T., Ohura, T., 2006. Temporal trends and
relationships of particulate chlorinated polycyclic aromatic hydrocar-
bons and their parent compounds in urban air. Environ. Sci. Technol.
References
4
0, 4592–4598.
Arfsten, D.P., Schaeffer, D.J., Mulveny, D.C., 1996. The effects of near
ultraviolet radiation on the toxic effects of polycyclic aromatic
hydrocarbons in animals and plants: A review. Ecotoxicol. Environ.
Safe. 33, 1–24.
Baek, S.O., Field, R.A., Goldstone, M.E., Kirk, P.W., Lester, J.N., 1991.
A review of atmospheric polycyclic aromatic hydrocarbons: Sources,
fate and behavior. Water Air Soil Pollut. 60, 279–300.
Bidleman, T.F., 1988. Atmospheric processes, wet and dry deposition of
organic compounds are controlled by their vapor-particle partitioning.
Environ. Sci. Technol. 22, 361–367.
Chen, J.W., Kong, L.R., Zhu, C.M., Huang, Q.G., Wang, L.S., 1996.
Correlation between photolysis rate constants of polycyclic aromatic
hydrocarbons and frontier molecular orbital energy. Chemosphere 33,
Lamotte, M., Pereyre, J., Joussot-Dubien, J., Lapouyade, R., 1987. The
photolysis of pyrene and perylene in cyclohexane liquid solution from
highly excited electronic states. J. Photochem. 38, 177–188.
Lee, B.-D., Iso, M., Hosomi, M., 2001. Prediction of Fenton oxidation
positions in polycyclic aromatic hydrocarbons by frontier electron
density. Chemosphere 42, 431–435.
L o¨ nnermark, A., Blomqvist, P., 2006. Emissions from an automobile fire.
Chemosphere 62, 1043–1056.
Mantis, J., Chaloulakou, A., Samara, C., 2005. PM10-bound polycyclic
aromatic hydrocarbons (PAHs) in the Greater Area of Athens, Greece.
Chemosphere 59, 593–604.
McDow, S.R., Sun, O.-R., Vartiainen, M., Hong, Y.-S., Yao, Y.-L.,
Fister, T., Yao, R.-Q., Kamens, R.M., 1994. Effect of composition and
state of organic components on polycyclic aromatic hydrocarbon
decay in atmospheric aerosols. Environ. Sci. Technol. 28, 2147–2153.
Menzie, C.A., Potocki, B.B., Santodonato, J., 1992. Exposure to
carcinogenic PAHs in the environment. Environ. Sci. Technol. 26,
1278–1284.
1143–1150.
Chen, J., Peijnenburg, W.J.G.M., Quan, X., Yang, F., 2000. Quantitative
structure-property relationships for direct photolysis quantum yields
of selected polycyclic aromatic hydrocarbons. Sci. Total Environ. 246,
11–20.
Chen, J., Quan, X., Schramm, K.-W., Kettrup, A., Yang, F., 2001a.
Quantitative structure-property relationships (QSPRs) on direct pho-
tolysis of PCDDs. Chemosphere 45, 151–159.
Minero, C., Bono, F., Rubertelli, F., Pavino, D., Maurino, V., Pelizzetti,
E., Vione, D., 2007. On the effect of pH in aromatic photonitration
upon nitrate photolysis. Chemosphere 66, 650–656.
Chen, J., Quan, X., Yan, Y., Yang, F., Peijnenburg, W.J.G.M., 2001b.
Quantitative structure-property relationship studies on direct photol-
ysis of selected polycyclic aromatic hydrocarbons in atmospheric
aerosol. Chemosphere 42, 263–270.
Dewhurst, F., Kitchen, D.A., 1972. Synthesis and properties of 6-substi-
tuted benzo[a]pyrene derivatives. J. Chem. Soc. Perk. T 2, 710–712.
Dung, M.H., O’Keefe, P.W., 1994. Comparative rates of photolysis of
polychlorinated dibenzofurans in organic solvents and in aqueous
solutions. Environ. Sci. Technol. 28, 549–554.
Finlayson-Pitts, B.J., Pitts Jr., J.N., 1997. Tropospheric air pollution:
Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and parti-
cles. Nature 276, 1045–1052.
Finlayson-Pitts, B.J., Pitts Jr., J.N., 2000. Chemistry of the Upper and
Lower Atmosphere. Academic Press, San Diego.
Nielsen, T., 1984. Reactivity of polycyclic aromatic hydrocarbons toward
nitrating species. Environ. Sci. Technol. 18, 157–163.
Niu, J.F., Shen, Z.Y., Yang, Z.F., Long, X.X., Yu, G., 2006. Quantitative
structure-property relationships on photodegradation of polybromi-
nated diphenyl ethers. Chemosphere 64, 658–665.
Niu, J., Wang, L., Yang, Z., 2007. QSPRs on photodegradation half-lives
of atmospheric chlorinated polycyclic aromatic hydrocarbons associ-
ated with particulates. Ecotoxicol. Environ. Safe. 66, 272–277.
Ohura, T., 2007. Environmantal behavior, sources, and effects of
chlorinated polycyclic aromatic hydrocarbons. The Scientific World
J. 7, 372–380.
Ohura, T., Kitazawa, A., Amagai, T., 2004. Seasonal variability of 1-
chloropyreneon a atmospheric particles and photostability in toluene.
Chemosphere 57, 831–837.
Frisch, M.J., Nielsen, A.B., Holder, A.J., 2000. Gauss ViewW User’s
Reference. Gaussian, Inc., Pittsburgh, PA.
Ohura, T., Kitazawa, A., Amagai, T., Makino, M., 2005. Occurrence,
profiles, and photostabilities of chlorinated polycyclic aromatic