1796
N. Weibel et al. / Tetrahedron Letters 47 (2006) 1793–1796
7. Dupuis, C.; Viguier, R.; Dupraz, A. Synth. Commun. 2001,
31, 1307.
8. Adams, R.; Miyano, S. J. Am. Chem. Soc. 1954, 76, 3168.
9. Bedel, S.; Ulrich, G.; Picard, C. Tetrahedron Lett. 2002,
43, 1697.
10. Dupraz, A.; Guy, P.; Dupuy, C. Tetrahedron Lett. 1996,
37, 1237.
11. Cohen, R. J.; Fox, D. L.; Eubank, D. L.; Salvatore, R. N.
Tetrahedron Lett. 2003, 44, 8617.
water, point to the presence of two species in solution.
In the case of L2, the longest lived species
(s = 1.23 ms, 25%) corresponds to the expected complex
with the tris-tridentate units wrapping around the first
coordination sphere of the europium atom, while the
shortest one (s = 0.27 ms, 75%) contains three coordi-
nated water molecules in the first coordination sphere,
pointing to the decoordination of one of the three tri-
dentate arm.19
12. El Ghayoury, A.; Ziessel, R. J. Org. Chem. 2000, 65, 7757.
`
13. Charbonniere, L.; Weibel, N.; Ziessel, R. J. Org. Chem.
2002, 67, 3933.
In short, we succeeded in alkylating a di-N-protected
trishydroxymethylaminomethane framework with bro-
minated pyridine or bipyridine modules. Alkylation is,
however, partially inhibited by an intramolecular hydro-
gen bond in the bis-alkylated intermediate species. The
resulting bromo groups were adequately transformed
into the ester and acid forms via a carboalkoxylation/
hydrolysis sequence. These new C3-like podands form
mononuclear complexes with europium with ligand
centred sensitization of the europium emission (antenna
effect). Work in progress concentrates on the
determination of the structure of the complexes in solu-
tion and on the complexation of other lanthanide
cations.
14. Compound L1H3Æ4HClÆ2H2O: 1H NMR (CD3OD,
200 MHz): d 4.30 (s, 6H), 4.87 (s, 4H), 4.94 (s, 6H),
7.17–7.28 (m, 10H), 7.80–7.84 (m, 3H), 8.18–8.24 (m, 6H);
13C NMR (CD3OD, 50 MHz): d 57.9, 69.7, 71.6, 74.1,
127.1, 129.3, 130.2, 130.7, 131.4, 132.5, 145.2, 145.8, 156.7,
163.7; FAB+/MS: m/z 707.3 ([L1H3+H]+, 100%). Anal.
Calcd for C39H38N4O9Æ4HClÆ2H2O: C, 52.71; H, 5.22; N,
6.30. Found: C, 52.52; H, 4.98; N, 6.14; IR (KBr, cmÀ1):
3435 (s), 2966 (w), 2933 (w), 1636 (m, mCOO, asym.), 1439
(w), 1384 (m, mCOO, sym.), 1275 (w), 1076 (w), 1010 (w);
UV–vis (0.01 M Tris/HCl buffer, pH = 7.0, kmax, nm
(emax, MÀ1 cmÀ1)): 268 (14,600).
15. March, J. Advanced Organic Chemistry, 3rd ed.; Wiley
Interscience, 1985; p 304.
16. Weaver, W. M.; Hutchison, J. D. J. Am. Chem. Soc. 1964,
86, 261.
17. Compound L2H3Æ4HClÆH2O: 1H NMR (CD3OD,
400 MHz): d 3.74 (s, 6H), 4.08 (s, 4H), 4.51 (s, 6H),
7.04–7.15 (m, 6H), 7.24–7.30 (m, 4H), 7.76 (dd, 3H,
3J = 8.5 Hz, 4J = 2.0 Hz), 7.94 (t, 3H, 3J = 8.0 Hz), 8.03
(d, 3H, 3J = 7.0 Hz), 8.30 (d, 3H, 3J = 8.0 Hz), 8.32 (d,
3H, 3J = 8.5 Hz), 7.49 (s, 3H); FAB+/MS: m/z 847.2
([L2H3–C7H7+H]+, 25%), 938.2 ([L2H3+H]+, 100%).
Anal. Calcd for C54H47N7O9Æ4HClÆH2O: C, 58.86; H,
4.85; N, 8.90. Found: C, 58.69; H, 4.88; N, 8.82; IR (KBr,
cmÀ1): 3445 (s), 1635 (m, mCOO, asym.), 1384 (m, mCOO, sym.),
1262 (w), 1096 (w); UV–vis (0.01 M Tris/HCl buffer,
pH = 7.0, kmax, nm (emax, MÀ1 cmÀ1)): 242 (27,600), 290
(32,800).
References and notes
1. Koeller, S.; Bernardinelli, G.; Bocquet, B.; Piguet, C.
Chem. Eur. J. 2003, 9, 1062.
2. Belser, P.; De Cola, L.; Von Zelewsky, A. J. Chem. Soc.,
Chem. Commun. 1988, 1057.
`
3. Weibel, N.; Charbonniere, L. J.; Guardigli, M.; Roda, A.;
Ziessel, R. J. Am. Chem. Soc. 2004, 126, 4888.
4. Sohna Sohna, J.-E.; Fages, F. Tetrahedron Lett. 1997, 38,
1381.
´
5. Gillies, E. R.; Frechet, J. M. J. J. Am. Chem. Soc. 2002,
124, 14137.
6. (a) Newkome, G. R.; Lin, X. Macromolecules 1991, 24,
1443; (b) Newkome, G. R.; Moorefield, C. N.; Baker, G.
R. Aldrichim. Acta 1992, 25, 31; (c) Viguier, R.; Serratrice,
G.; Dupraz, A.; Dupuy, C. Eur. J. Inorg. Chem. 2001,
1789.
18. Absolute quantum yields determined relatively to
[Ru(bipyridine)3]Cl2 in air equilibrated water (2.8%)
Nakamura, K. Bull. Chem. Soc. Jpn. 1982, 5, 2697.
`
19. Mameri, S.; Charbonniere, L.; Ziessel, R. Inorg. Chem.
2004, 43, 1819.