Carbon Nanotube–Acridine Nanohybrids
FULL PAPER
NH3. A yellow precipitate was obtained and collected by filtration. Re-
crystallization from EtOH provided 2 as brownish crystals (1.7 g, 70%).
1H NMR (CDCl3): d=8.26 (d, 2H, J=8.8 Hz), 7.84 (d, 2H, J=8.8 Hz),
7.76 (m, 2H), 7.42 (m, 2H), 7.24 (d, 2H, J=6.4 Hz), 6.91 (d, 2H, J=
6.4 Hz), 3.93 ppm (brs, 2H); 13C NMR (CDCl3): d=148.8, 147.9, 146.6,
131.7, 129.9, 129.5, 127.2, 125.6, 125.5, 125.3, 114.8 ppm; IR (NaCl): n˜ =
[9] D. M. Guldi, G. M. A. Rahman, S. Qin, M. Tchoul, W. T. Ford, M.
Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli, M. Prato, Chem.
[10] G. Pagona, A. S. D. Sandanayaka, Y. Araki, J. Fan, N. Tagmatarchis,
[11] D. M. Guldi, G. M. A. Rahman, F. Zerbetto, M. Prato, Acc. Chem.
[12] G. Magadur, J.-S. Lauret, V. Alain-Rizzo, C. Voisin, P. Roussignol,
[13] D. Baskaran, J. W. Mays, X. P. Zhang, M. S. Bratcher, J. Am. Chem.
[14] S. Campidelli, C. Sooambar, E. Lozano-Diz, C. Ehli, D. M. Guldi,
[15] C. Ehli, G. M. A. Rahman, N. Jux, D. Balbinot, D. M. Guldi, F. Pao-
lucci, M. Marcaccio, D. Paolucci, M. Melle-Franco, F. Zerbetto, S.
[16] D. M. Guldi, G. M. A. Rahman, N. Jux, N. Tagmatarchis, M. Prato,
3463, 3316, 3208, 3037, 1630, 1604, 1515, 1412, 1288, 821, 760 cmꢀ1
.
9-Phenylacridinediazonium tetrafluoroborate (3): To a solution of nitro-
sonium tetrafluoroborate (526 mg, 1.4 equiv) in dry CH3CN (5 mL) was
added, at ꢀ308C, a solution of 2 (870 mg, 3.2 mmol, 1equiv) dissolved in
anhydrous CH3CN/CH2Cl2 5:1 (6 mL). The mixture was stirred for 1.5 h
at ꢀ308C and further stirred at RT for 1 h. Et2O (50 mL) was added and
the precipitate was collected by filtration. The resulting solid was washed
with Et2O and concentrated under vacuum to give a yellow powder cor-
responding to 3 in quantitative yield (1.2 g). 1H RMN (CD3CN): d=8.80
(d, 2H, J=8.4 Hz), 8.41 (d, 2H, J=8.8 Hz), 8.23 (t, 2H, J=7.8 Hz), 8.08
(d, 2H, J=8.4 Hz), 7.82 (m, 2H), 7.71 ppm (d, 2H, J=8.8 Hz); IR
(KBr): n˜ =3122, 3092, 3058, 2295, 1641, 1585, 1050, 758 cmꢀ1
.
NT–9-Phenylacridine (NT-PhA), 4: NTs (10 mg) were dispersed in anhy-
drous o-dichlorobenzene (6 mL) using a sonicating probe for 15 min. To
this suspension was added diazonium 3 (100 mg) dissolved in anhydrous
CH3CN (3 mL). The mixture was flushed with nitrogen for 10 min and
heated to 608C for 15 h. After cooling to RT, the functionalized NTs
(NT-PhA 4) were collected by centrifugation at 15000 rpm and extensive-
ly washed with THF, CH2Cl2 and finally Et2O.
[18] Z.-B. Liu, J.-G. Tian, Z. Guo, D.-M. Ren, F. Du, J.-Y. Zheng, Y.-S.
[19] M. Alvaro, P. Atienzar, P. de La Cruz, J. L. Delgado, V. Troiani, H.
[20] M. ꢃlvaro, P. Atienzar, J. L. Bourdelande, H. Garcia, Chem. Phys.
Lett. 2004, 384, 119–123.
NT–10-Methyl 9-phenylacridinium iodide (NT-PhMeA+), 5: NT-PhA
(3 mg) was dispersed in CH3I (5 mL) using a sonicating probe. The sus-
pension was heated to reflux for 3 d. NT-PhMeA+ 5 was collected by
centrifugation at 15000 rpm and extensively washed with THF, CH2Cl2
and finally Et2O.
[21] M. Alvaro, P. Atienzar, P. de La Cruz, J. L. Delgado, H. Garcia, F.
9-Phenylacridine (PhA), 6: To a solution of 3 (1.1 g) in anhydrous
CH3CN/CH2Cl2 10:5 (15 mL) were added cold (08C) hypophosphorous
acid (50% in water) (5 mL) and a catalytic amount of Cu2O. The reaction
was stirred for 1 h at RT and saturated NaHCO3 (20 mL) was added. The
aqueous phase was extracted with CH2Cl2 (3ꢂ10 mL) and the combined
organic phases were dried over Na2SO4, filtered and evaporated under
vacuum. Pale yellow crystals of PhA 6 were obtained in quantitative
yield without further purification (760 mg). 1H NMR (CDCl3): d=8.29
(d, 2H, J=8.8 Hz), 7.78 (t, 2H, J=7.6 Hz), 7.71 (d, 2H, J=8.8 Hz), 7.58–
7.64 (m, 3H), 7.41–7.46 ppm (m, 4H); 13C NMR (CDCl3): d=148.5,
135.7, 130.2, 129.8, 129.3, 128.3, 128.2, 126.7, 125.4, 124.9 ppm; IR (KBr):
[22] D. M. Guldi, M. Marcaccio, D. Paolucci, F. Paolucci, N. Tagma-
[23] G. Jones II, M. S. Farahat, S. R. Greenfield, D. J. Gosztola, M. R.
[24] G. Jones II, D. X. Yan, S. R. Greenfield, D. J. Gosztola, M. R. Wasie-
[25] G. Jones II, D. X. Yan, D. J. Gosztola, S. R. Greenfield, M. R. Wasie-
n˜ =3043, 1539, 1512, 1436, 1412, 756, 703 cmꢀ1
.
10-Methyl-9-phenylacridinium iodide (PhMeA+), 7: 9-Phenylacridine
(8.7 mg) was dissolved in CH3I (2 mL) and the solution was heated to
reflux for 3 d under nitrogen. The solution was cooled and Et2O (30 mL)
was added. A pale yellow precipitate was obtained and collected by cen-
trifugation to give pure 7 (10 mg, 75%). 1H NMR (CDCl3): d=8.90 (d,
2H, J=9.2 Hz), 8.41 (t, 2H, J=7.6 Hz), 7.96 (d, 2H, J=8.8 Hz), 7.78 (t,
2H, J=7.6 Hz), 7.70 (m, 3H), 7.45 (d, 2H, J=7.6 Hz), 5.15 ppm (s, 3H);
13C NMR (CDCl3): d=161.1, 141.5, 139.2, 132.9, 130.4, 129.9–128.9, 127.9,
125.9, 119.4, 54.2 ppm; IR (NaCl): n˜ =3484, 1609, 1578, 1550, 1454, 1380,
[27] H. Hu, B. Zhao, M. A. Hamon, K. Kamaras, M. E. Itkis, R. C.
[28] W. Wu, S. Zhang, Y. Li, J. Li, L. Liu, Y. Qin, Z. X. Guo, L. Dai, C.
[31] A. S. Cherkasov, I. E. Obyknovennaya, Izvestiya Akad. Nauk SSSR
Seria Fizich. 1968, 32, 1419–1425.
1251, 1225, 1009, 763 cmꢀ1
.
[32] I. E. Obyknovennaya, A. S. Cherkasov, Doklady Akad. Nauk SSSR
1966, 173, 867–869.
[35] K. Kasama, K. Kikuchi, S. Yamamoto, K. Ujiie, Y. Nishida, H. Ko-
[2] Topics in Applied Physics, Vol. 111 (Eds.: M. Endo, M. Strano, P.
Ajayan), Springer, Heidelberg, 2008, pp. 13–61.
[3] B. C. Satishkumar, L. O. Brown, Y. Gao, C.-C. Wang, H.-L. Wang,
[4] D. Z. Guo, G. M. Zhang, Z. X. Zhang, Z. Q. Xue, Z. N. Gu, J. Phys.
[38] K. Kikuchi, K. Kasama, A. Kanemoto, K. Ujiie, H. Kikubun, J.
[39] V. L. Ivanov, S. A. Alꢅ-Ainen, M. G. Kuzꢅmin, Doklady Akad. Nauk
SSSR 1981, 256, 638–641.
[40] J. Joseph, E. Kuruvilla, A. T. Achuthan, D. Ramaiah, G. B. Schuster,
[5] M. ꢃ. Herranz, N. Martꢄn, S. Campidelli, M. Prato, G. Brehm, D. M.
[6] M. DꢅEste, M. D. Nardi, E. Menna, Eur. J. Org. Chem. 2006, 2517–
2522.
Chem. Eur. J. 2009, 15, 3882 – 3888
ꢁ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3887