Journal of the American Chemical Society
COMMUNICATION
studies focus on subsequent modifications at the NH,NR-func-
tionalized NHC ligand and on the use of the N-H function of
the NHC ligand for the recognition of selected substrates via
intermolecular hydrogen bonds.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details for the
b
synthesis of all compounds; X-ray crystallographic files for comp-
ounds trans-[3]BF4 CH2Cl2, cis-[4]BF4, trans-[4]BF4 0.5CH2-
Cl2, and [5] H2O 0.5Et2O. This material is available free of
3
3
3
3
Figure 2. Molecular structures of cis-[4]þ in cis-[4]BF4 (left) and
trans-[4]þ in trans-[4]BF4 0.5CH2Cl2 (right) (hydrogen atoms, ex-
3
cluding the ones bound to N2, the anion, and solvent molecules, have
been omitted for clarity). Selected bond distances (Å) and angles (deg)
for cis-[4]þ [trans-[4]þ]: Pt-Cl1 2.3434(5) [2.3483(11)], Pt-P1 2.34-
57(5) [2.3171(12)], Pt-P2 2.2452(6) [2.3123(12)], Pt-C1 2.017(2)
[1.972(4)], N1-C1 1.347(3) [1.350(6)], N2-C1 1.352(3) [1.349-
(6)]; Cl1-Pt-P1 87.10(2) [89.59(4)], Cl1-Pt-P2 175.77(2)
[87.18(4)], Cl1-Pt-C1 87.02(6) [178.78(14)], P1-Pt-P2 96.97-
(2) [175.77(4)], P1-Pt-C1 172.77(6) [91.00(13)], P2-Pt-C1
88.99(6) [92.19(13)].
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We thank the Deutsche Forschungsgemeinschaft (SFB 858,
IRTG 1444) for financial support.
Pt-CNHC separation for trans-[4]þ falling in the range observed
previously for related complexes of type trans-[PtCl(NH,NR-
NHC)(PR3)2.15b These differences can be attributed to the
differences in the trans-influence of the π-donor chloro ligand in
comparison to the σ-donor/π-acceptor phosphine ligand.
’ REFERENCES
(1) Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc.
1991, 113, 361–363.
(2) (a) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2008, 47,
3122–3172. (b) de Frꢀemont, P.; Marion, N.; Nolan, S. P. Coord. Chem.
Rev. 2009, 253, 862–892. (c) Melaimi, M.; Soleilhavoup, M.; Bertrand,
G. Angew. Chem., Int. Ed. 2010, 49, 8810–8849.
(3) (a) Read de Alaniz, J.; Kerr, M. S.; Moore, J. L.; Rovis, T. J. Org.
Chem. 2008, 73, 2033–2040. (b) Enders, D.; Niemeier, O.; Henseler, A.
Chem. Rev. 2007, 107, 5606–5655. (c) Marion, N.; Díez-Gonzꢀalez, S.;
Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988–3000.
(4) (a) Hahn, F. E.; Radloff, C.; Pape, T.; Hepp, A. Chem.-Eur. J.
2008, 14, 10900–10904. (b) Hahn, F. E.; Radloff, C.; Pape, T.; Hepp, A.
Organometallics 2008, 27, 6408–6410. (c) Radloff, C.; Hahn, F. E.; Pape,
T.; Fr€ohlich, R. Dalton Trans. 2009, 7215–7222. (d) Rit, A; Pape, T.;
Hahn, F. E. J. Am. Chem. Soc. 2010, 132, 4572–4573. (e) Radloff, C.;
Gong, H.-Y.; Schulte to Brinke, C.; Pape, T.; Lynch, V. M.; Sessler, J. L.;
Hahn, F. E. Chem.-Eur. J. 2010, 16, 13077–13081.
Alkylation of the nitrogen atom in complexes bearing protic
NH,NR-functionalized NHC ligands has been demonstrated.9,10
Accordingly, the protic NHC ligand in complex trans-[3]BF4 can
be N-alkylated by deprotonation with KOtBu and subsequent
reaction with MeOTf (Scheme 2, SI) leading to compound trans-
[6]X (X = BF4, OTf) with a classical NMe,NMe-functionalized
NHC ligand. While complexes like trans-[6]X are normally
prepared from imidazolium salts (Scheme 1), the alkylation
reaction serves to demonstrate the remaining reactivity of the
carbene ligand in complex trans-[3]BF4. Complexes bearing NH,
NR-functionalized NHC ligands are valuable intermediates for
subsequent modifications at the carbene ligand, allowing for
example, the generation of unsymmetrical NHCs or the linkage
of the NHC to additional donor groups.10
The oxidative addition of 2-chloro-N-alkylbenzimidazoles
followed by protonation of the remaining free ring nitrogen
atom constitutes an alternative and complementary synthetic
strategy for the generation of complexes bearing “protic” NHC
ligands. Such complexes (C in Scheme 1) have previously been
obtained by template-controlled cyclization of β-functionalized
aryl9a-c,10a or alkyl9d,e,10b-d isocyanides followed by N-alkyla-
tion. The cyclization reaction proceeds by an intramolecular
nucleophilic attack of the β-substituent at the isocyanide carbon
atom. This attack is only possible if the coordinated isocyanide is
not deactivated by dfπ* backbonding, i.e. if the isocyanide is
coordinated to an electron-poor metal center.9a,18 The oxida-
tive addition of 2-chloro-N-alkylbenzimidazoles, on the other
hand, requires an electron-rich metal center to proceed and
thus constitutes an alternative and complementary synthesis
to the template-controlled cyclization of β-functionalized
isocyanides.
(5) (a) Díez-Gonzꢀalez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009,
109, 3612–3676. (b) Poyatos, M.; Mata, J. A.; Peris, E. Chem. Rev. 2009,
109, 3677–3707.
(6) (a) Hahn, F. E.; Wittenbecher, L.; Le Van, D.; Fr€ohlich, R. Angew.
Chem., Int. Ed. 2000, 39, 541–544. (b) Lappert, M. F. J. Organomet. Chem.
2005, 690, 5467–5473.
(7) (a) Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.;
Hwang, W. S.; Lin, I. J. B. Chem. Rev. 2009, 109, 3561–3598. (b)
Garrison, J. C.; Youngs, W. J. Chem. Rev. 2005, 105, 3978–4008.
(8) (a) McGuinness, D. S.; Cavell, K. J.; Yates, B. F. Chem. Commun.
2001, 355–356. (b) McGuinness, D. S.; Cavell, K. J.; Yates, B. F.;
Skelton, B. W.; White, A. H. J. Am. Chem. Soc. 2001, 123, 8317–8328.
(c) Gr€undemann, S.; Albrecht, M.; Kovacevic, A.; Faller, J. W.; Crabtree,
R. H. J. Chem. Soc., Dalton Trans. 2002, 2163–2167. (d) Mas-Marzꢀa, E.;
Sanaꢀu, M.; Peris, E. Inorg. Chem. 2005, 44, 9961–9967. (e) Kremzow, D.;
Seidel, G.; Lehmann, C. W.; F€urstner, A. Chem.-Eur. J. 2005, 11, 1833–
1853. (f) Cavell, K. J.; McGuinness, D. S. Coord. Chem. Rev. 2004, 248,
671–681.
(9) (a) Tamm, M.; Hahn, F. E. Coord. Chem. Rev. 1999, 182, 175–
209. (b) Hahn, F. E.; Langenhahn, V.; Meier, N.; L€ugger, T.; Fehlhammer,
W. P. Chem.-Eur. J. 2003, 9, 704–712. (c) Hahn, F. E.; García Plumed, C.;
M€under, M.; L€ugger, T. Chem.-Eur. J. 2004, 10, 6285–6293. (d) Hahn,
F. E.; Langenhahn, V.; Pape, T. Chem. Commun. 2005, 5390–5392.
(e) Flores-Figueroa, A.; Kaufhold, O.; Feldmann, K.-O.; Hahn, F. E.
Dalton Trans. 2009, 9334–9342.
We have developed a one-pot synthesis for complexes bearing
NH,NR-substituted NHC ligands via the oxidative addition of
2-chloro-substituted N-methylbenzimidazole to complexes of
zero-valent group 10 metals followed by N-protonation. Current
2114
dx.doi.org/10.1021/ja110634h |J. Am. Chem. Soc. 2011, 133, 2112–2115