Journal of the American Chemical Society
Article
kinetically stable, highly ordered, octameric form of lithium tert-
butoxide and its implications regarding aggregate formation. J. Am.
Chem. Soc. 2004, 126, 484. (c) Boyle, T. J.; Alam, T. M.; Peters, K. P.;
Rodriguez, M. A. Structural diversity of lithium neopentoxide
compounds. Inorg. Chem. 2001, 40, 6281.
REFERENCES
■
(
1) (a) Yang, B. H.; Chen, H.; Gleason, J. L.; Myers, A. G. Use of
Pseudoephedrine as a Practical Chiral Auxiliary for Asymmetric
Synthesis. J. Am. Chem. Soc. 1994, 116, 9361. (b) McKinstry, L.;
Myers, A. G. Practical Syntheses of Enantiomerically Enriched γ-
Lactones and γ-Hydroxy Ketones by the Alkylation of Pseudoephe-
drine Amides with Epoxides and their Derivatives. J. Org. Chem. 1996,
(7) Renny, J. S.; Tomasevich, L. L.; Tallmadge, E. H.; Collum, D. B.
Method of Continuous Variations: Applications of Job Plots to the
Study of Molecular Associations in Organometallic Chemistry. Angew.
Chem., Int. Ed. 2013, 52, 11998.
6
1, 2428. (c) Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.;
Gleason, J. L.; Myers, A. G. Pseudoephedrine as a Practical Chiral
Auxiliary for the Synthesis of Highly Enantiomerically Enriched
Carboxylic Acids, Alcohols, Aldehydes, and Ketones. J. Am. Chem. Soc.
997, 119, 6496.
2) Evans, D. A.; Takacs, J. M. Enantioselective Alkylation of Chiral
Enolates. Tetrahedron Lett. 1980, 21, 4233.
̈
3) (a) Sandham, D. A.; Taylor, R. J.; Carey, J. S.; Fassler, A. A
convergent synthesis of the renin inhibitor CGP60536B. Tetrahedron
Lett. 2000, 41, 10091. (b) Dragovich, P. S.; Prins, T. J.; Zhou, R.
Formal, stereoselective synthesis of hydroxyethylene dipeptide
isosteres utilizing pseudoephedrine amides. J. Org. Chem. 1997, 62,
(
8) (a) Casey, B. M.; Flowers, R. A. On the Nature of the Oxidative
Heterocoupling of Lithium Enolates. J. Am. Chem. Soc. 2011, 133,
1492. (b) Jin, K. J.; Collum, D. B. Solid-State and Solution
1
1
(
Structures of Glycinimine-Derived Lithium Enolates. J. Am. Chem.
Soc. 2015, 137, 14446. (c) For a marked influence of aggregate aging
on the reactivity and selectivity of organolithiums, see: Xu, F.;
Reamer, R. A.; Tillyer, R.; Cummins, J. M.; Grabowski, E. J. J.; Reider,
P. J.; Collum, D. B.; Huffman, J. C. Highly Enantioselective 1,2-
Addition of Lithium Acetylide-Ephedrate Complexes: Spectroscopic
Evidence for Reaction Proceeding via a 2:2 Tetramer, and X-ray
Characterization of Related Complexes. J. Am. Chem. Soc. 2000, 122,
(
7
872. (c) Sinz, C.; Bittner, A.; Brady, E.; Candelore, M.; Dallas-Yang,
1
1212. (d) Tallmadge, E. H.; Jermaks, J.; Collum, D. B. Structure−
Q.; Ding, V.; Jiang, G.; Lin, Z.; Qureshi, S.; Salituro, G.; Saperstein,
R.; et al. Discovery of N-Aryl-2-acylindole human glucagon receptor
antagonists. Bioorg. Med. Chem. Lett. 2011, 21, 7124. (d) Narasimhulu,
C. P.; Das, P. Stereoselective Preparation of C1-C10 and C11-O14
Fragments of Narbonolide: Exploiting the Versatility of Thiazolidi-
nethione Chiral Auxiliary. Synthesis 2009, 2009, 474. (e) Smitrovich,
J. H.; DiMichele, L.; Qu, C.; Boice, G. N.; Nelson, T. D.; Huffman,
M. A.; Murry, J. Michael Reactions of Pseudoephedrine Amide
Enolates: Effect of LiCl on Syn/Anti Selectivity. J. Org. Chem. 2004,
Reactivity Relationships in Lithiated Evans Enolates: Influence of
Aggregation and Solvation on the Stereochemistry and Mechanism of
Aldol Additions. J. Am. Chem. Soc. 2016, 138, 345.
(9) Ma, Y.; Hoepker, A. C.; Gupta, L.; Faggin, M. F.; Collum, D. B.
1,4-Addition of Lithium Diisopropylamide to Unsaturated Esters:
Role of Rate-Limiting Deaggregation, Autocatalysis, Lithium Chloride
Catalysis and Other Mixed Aggregation Effects. J. Am. Chem. Soc.
2
(
010, 132, 15610.
10) Jermaks, J.; Tallmadge, E. H.; Keresztes, I.; Collum, D. B.
6
(
9, 1903.
Lithium Amino Alkoxide−Evans Enolate Mixed Aggregates: Aldol
Addition with Matched and Mismatched Stereocontrol. J. Am. Chem.
Soc. 2018, 140, 3077.
4) (a) Seebach, D. Structure and Reactivity of Lithium Enolates.
From Pinacolone to Selective C-Alkylations of Peptides. Difficulties
and Opportunities Afforded by Complex Structures. Angew. Chem.,
Int. Ed. Engl. 1988, 27, 1624. (b) Braun, M. Lithium Enolates:
Capricious’ Structures - Reliable Reagents for Synthesis. Helv. Chim.
Acta 2015, 98, 1.
5) (a) Gruver, J. M.; West, S. P.; Collum, D. B.; Sarpong, R.
Experimental Characterization and Computational Study of Unique
C,N-Chelated Lithium Dianions. J. Am. Chem. Soc. 2010, 132, 13212.
b) Li, D.; Keresztes, I.; Hopson, R.; Williard, P. G. Characterization
(11) (a) Garratt, P. J.; Vollhardt, K. P. C. Homophthalaldehyde.
Synthesis 1971, 8, 423. (b) Huang, X.; Tanaka, K. S.; Bennet, A. J.
Glucosidase-catalyzed hydrolysis of α-D-glucopyranosyl pyridinium
salts: kinetic evidence for nucleophilic involvement at the
glucosidation transition state. J. Am. Chem. Soc. 1997, 119, 11147.
’
(
(
12) Algera, R. F.; Ma, Y.; Collum, D. B. Sodium Diisopropylamide:
Aggregation, Solvation, and Stability. J. Am. Chem. Soc. 2017, 139,
921.
13) (a) Friebolin, H. Basic One- and Two-Dimensional NMR
(
7
(
of Reactive Intermediates by Multinuclear Diffusion-Ordered NMR
Spectroscopy (DOSY). Acc. Chem. Res. 2009, 42, 270. (c) Gareyev,
R.; Ciula, J. C.; Streitwieser, A. Lithium and Cesium Ion-Pair Acidities
of Dibenzyl Ketone. Aggregation of Lithium and Cesium Ion Pairs of
the Enolate Ion and Dianion. J. Org. Chem. 1996, 61, 4589. (d) Brand,
H.; Capriotti, J. A.; Arnold, J. New Lithium Porphyrin Derivatives:
Synthesis of Li (P)(Et O) (P = TTP, TBPP) and Solution Structure
Spectroscopy; Wiley VCH: Weinheim, 2010. (b) Claridge, T. D. W.
High-Resolution NMR Techniques in Organic Chemistry, 2nd ed.;
Elsevier: Amsterdam, 2009.
(
14) (a) Sørland, G. H. Dynamic Pulsed-Field-Gradient NMR;
Springer: Berlin, 2014. (b) Poppler, A.-C.; Granitzka, M.; Herbst-
̈
2
2
2
7
15
Irmer, R.; Chen, Y.-S.; Iversen, B. B.; John, M.; Mata, R. A.; Stalke, D.
Characterization of oa Multicomponent Lithium Lithiate from a
Combined X-Ray Diffraction, NMR Spectroscopy, and Computa-
tional Approach. Angew. Chem., Int. Ed. 2014, 53, 13282. (c) Neufeld,
R.; Teuteberg, T. L.; Herbst-Irmer, R.; Mata, R. A.; Stalke, D.
of Li (TTP)(Et O) by Li and N NMR. Inorg. Chem. 1994, 33,
2
2
2
4
334. (e) Gu
Organolithium Compounds. J. Braz. Chem. Soc. 1999, 10, 241.
f) Jacobson, M. A.; Keresztes, I.; Williard, P. G. On the Mechanism
̈
nther, H. Selected Topics from Recent NMR Studies of
(
of THF Catalyzed Vinylic Lithiation of Allylamine Derivatives:
Structural Studies Using 2-D and Diffusion-Ordered NMR Spectros-
copy. J. Am. Chem. Soc. 2005, 127, 4965. (g) Cohen, Y.; Roelofs, N.
H.; Reinhardt, G.; Scott, L. T.; Rabinovitz, M. Novel carbocyclic
dianions: NMR study of charge delocalization, paratropicity, and
structure in the dianions of acephenanthrylene and aceanthrylene. J.
Org. Chem. 1987, 52, 4207. (h) Matsuo, T.; Mizue, T.; Sekiguchi, A.
Synthesis and Molecular Structure of a Dilithium Salt of the cis-
Diphenylcyclobutadiene Dianion. Chem. Lett. 2000, 29, 896.
i) Henderson, K. W.; Dorigo, A. E.; MacEwan, G. J.; Williard, P.
G. Structure of an unsymmetrical heptalithium cage complex
containing aldolate and enolized aldolate dianion. Tetrahedron
011, 67, 10291.
Solution Structures of Hauser Base i-Pr NMgCl and Turbo-Hauser
2
Base i-Pr NMgCl•LCl in THF and the Influence of LiCl on the
2
Schlenk Equilibrium. J. Am. Chem. Soc. 2016, 138, 4796.
(15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.;
Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi,
R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar,
S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox,
J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A.
(
2
(
6) (a) MacLellan, J. G.; Mulvey, R. E.; Nichols, P. J.; Andrews, P. C.
New homo- and hetero-alkali metal alkoxide cages; crystal structures
of [Me N(CH ) OLi] and [{Me N(CH ) O} Li K ]O. J. Chem.
2
2
2
8
2
2
2
12
8 6
Soc., Dalton Trans. 2002, 1651. (b) Allan, J. F.; Nassar, R.; Specht, E.;
Beatty, A.; Calin, N.; Henderson, K. W. Characterization of a
P
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX