3 J. W. Costerton, P. S. Stewart and E. P. Greenberg, Science, 1999,
284, 1318–1322.
4 M. Mrksich and G. M. Whitesides, ACS Symp. Ser., 1997, 680,
361–373.
5 K. L. Prime and G. M. Whitesides, Science, 1991, 252, 1164–1167.
6 C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and
D. E. Ingber, Science, 1997, 276, 1425–1428; J. Gu, C. M. Yam,
S. Li and C. Cai, J. Am. Chem. Soc., 2004, 126, 8098–8099;
C. M. Yam, M. Deluge, D. Tang, A. Kumar and C. Cai,
J. Colloid Interface Sci., 2006, 296, 118–130; K. A. Simon,
E. A. Burton, Y. Han, J. Li, A. Huang and Y.-Y. Luk,
J. Am. Chem. Soc., 2007, 129, 4892–4893; E. A. Burton,
K. A. Simon, S. Hou, D. Ren and Y.-Y. Luk, Langmuir, 2009,
25, 1547–1553.
Fig. 5 Optical micrographs for the adhesion of Swiss albino 3T3
fibroblast on 600 mm-wide squares of pentadecanethiols, surrounded
by (A) amine-terminated monolayer, 3, for 1 day, (B) for 3 days, and
(C) EG3OH-terminated monolayer, 4, for 1 day. Scale bar = 152 mm.
7 T. Sun, D. Han, K. Rhemann, L. Chi and H. Fuchs, J. Am. Chem.
Soc., 2007, 129, 1496–1497.
amine-terminated SAMs, and little cells were seen inside the
8 E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama and
G. M. Whitesides, Langmuir, 2001, 17, 5605–5620.
9 Y.-Y. Luk, PhD Thesis, University of Chicago, 2001; Y.-Y. Luk,
M. Kato and M. Mrksich, Langmuir, 2000, 16, 9604–9608.
10 S. Hou, E. A. Burton, R. L. Wu, Y.-Y. Luk and D. Ren, Chem.
Commun., 2009, 1207–1209.
11 D. Bandyopadhyay, D. Prashar and Y.-Y. Luk, Langmuir, 2011,
110412084456042, DOI: 10.1021/la200230t.
12 R. O. Hynes, Cell, 1992, 69, 11–25.
13 E. Ruoslahti and M. D. Pierschbacher, Science, 1987, 238,
491–497.
14 D. Hanein, B. Geiger and L. Addadi, Science, 1994, 263,
1413–1416.
15 R. G. Chapman, E. Ostuni, S. Takayama, R. E. Holmlin, L. Yan
and G. M. Whitesides, J. Am. Chem. Soc., 2000, 122, 8303–8304.
16 R. G. Chapman, E. Ostuni, M. N. Liang, G. Meluleni, E. Kim,
L. Yan, G. Pier, H. S. Warren and G. M. Whitesides, Langmuir,
2001, 17, 1225–1233.
17 F. Vanzi, B. Madan and K. Sharp, J. Am. Chem. Soc., 1998, 120,
10748–10753.
18 C. Xu, S. C. Ng and H. S. O. Chan, Langmuir, 2008, 24,
9118–9124.
methyl-terminated squares, giving
a ‘‘reversed’’ pattern
(Fig. 5A). Over a short period of 3 days, a confluent mono-
layer of cells was observed, covering the entire monolayer
(Fig. 5B). In contrast, EG3OH-terminated monolayer resisted
cell adhesion from the beginning of cell culture (Fig. 5C).
These results support the notion that amine groups are likely
chaotropic in nature, and supported rapid cell adhesion.
Several theories exist for bioinert chemistries that resist
protein adsorption.8,9,15,20,21,28 To understand the bioinert
surface chemistry, we note that polyols are similar in structure
to glycerol and sucrose that are known to stabilize protein
structure.22 Other small molecules such as urea and
guanidinium are known to denature proteins.23–25 While the
stabilizing or destabilizing effects of added ions or molecules
on protein folding may be due to direct25,26 or indirect24,25
interactions between the additives and the proteins, the
stabilizing effect by nonionic organic osmolytes on protein
structure is likely indirect.25 Together, these results are
consistent with the notion that organic molecules that stabilize
protein structure can also resist biofouling when immobilized
on a surface.9,27 One plausible mechanism for such anti-
fouling chemistry is an extensively hydrogen bonded water
network on the monolayer, which prevents biological entities
from contacting or attaching to the surface.9,27,28
19 C. Pale-Grosdemange, E. S. Simon, K. L. Prime and
G. M. Whitesides, J. Am. Chem. Soc., 1991, 113, 12–20.
20 R. L. C. Wang, H. J. Kreuzer and M. Grunze, J. Phys. Chem. B,
1997, 101, 9767–9773.
21 P. Harder, M. Grunze, R. Dahint, G. M. Whitesides and
P. E. Laibinis, J. Phys. Chem. B, 1998, 102, 426–436;
K. Feldman, G. Haehner, N. D. Spencer, P. Harder and
M. Grunze, J. Am. Chem. Soc., 1999, 121, 10134–10141;
R. E. Holmlin, X. Chen, R. G. Chapman, S. Takayama and
G. M. Whitesides, Langmuir, 2001, 17, 2841–2850.
22 K. Gekko and S. N. Timasheff, Biochemistry, 1981, 20, 4667–4676;
J. C. Lee and S. N. Timasheff, J. Biol. Chem., 1981, 256, 7193–7201;
H. Herberhold, C. A. Royer and R. Winter, Biochemistry, 2004, 43,
3336–3345.
23 M. E. Noelken and S. N. Timasheff, J. Biol. Chem., 1967, 242,
5080–5085; E. Reisler, Y. Haik and H. Eisenberg, Biochemistry,
1977, 16, 197–203; R. B. Simpson and W. Kauzmann, J. Am.
Chem. Soc., 1953, 75, 5139–5152; C. Tanford, J. Am. Chem. Soc.,
1964, 86, 2050–2059.
24 X. Chen, L. B. Sagle and P. S. Cremer, J. Am. Chem. Soc., 2007,
129, 15104–15105.
25 Y. Zhang and P. S. Cremer, Annu. Rev. Phys. Chem., 2010, 61,
63–83.
26 W. Kunz, J. Henle and B. W. Ninham, Curr. Opin. Colloid Inter-
face Sci., 2004, 9, 19–37; K. D. Collins, Methods Enymol., 2004, 34,
300–311; J. S. Uejio, C. P. Schwartz, A. M. Duffin, W. S. Drisdell,
R. C. Cohen and R. J. Saykally, Proc. Natl. Acad. Sci. U. S. A.,
2008, 105, 6809–6812; Y. Zhang and P. S. Cremer, Proc. Natl.
Acad. Sci. U. S. A., 2009, 106, 15249–15253.
In summary, SAMs presenting chiral polyols that have the
same chemical composition have different abilities to resist
mammalian cell adhesion. While cells can distinguish chiral
surfaces that support adhesion,7,14 our results show that cells
can also distinguish chirality of the surface when the surface
chemistry is to resist cell adhesion. We observed enhanced
bioinertness on monolayer formed by racemic mixtures of both
gulitol- and mannonamide-terminated alkanethiols, suggesting
that this racemic effect on bioinertness is likely general for
other bioinert chiral monolayers. These results suggest an
approach for potentially enhancing antifouling chemistry on
materials beyond gold films. We believe that this bioinert
chemistry is influenced strongly by the water solvation and
organization at the interface.20,29
Notes and references
27 R. S. Kane, P. Deschatelets and G. M. Whitesides, Langmuir,
2003, 19, 2388–2391.
28 J. C. Hower, Y. He and S. Jiang, J. Chem. Phys., 2008, 129,
215101/1–215101/7; D. J. Vanderah, R. J. Vierling and
M. L. Walker, Langmuir, 2009, 25, 5026–5030.
1 I. Banerjee, R. C. Pangule and R. S. Kane, Adv. Mater., 2011, 23,
690–718; A. Magnani, G. Peluso, S. Margarucci and K. K. Chittur,
Integr. Biomater. Sci., 2002, 669–689.
2 M. Mrksich and G. M. Whitesides, Annu. Rev. Biophys. Biomol.
Struct., 1996, 25, 55–78; J. M. Anderson, Annu. Rev. Mater. Res.,
2001, 31, 81–110.
29 D. Hanein, H. Sabanay, L. Addadi and B. Geiger, J. Cell Sci.,
1993, 104, 275–288.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 6165–6167 6167