ACS Infectious Diseases
Article
of hypervirulent tuberculosis strains that inhibits the innate immune
Ligase in Mycobacterium tuberculosis Resistant to Cyclonucleoside
Formation. ACS Med. Chem. Lett. 4, 1213−1217.
response. Nature 431, 84−87.
(
6) Cambier, C. J., Takaki, K. K., Larson, R. P., Hernandez, R. E.,
(22) Bockman, M. R., Kalinda, A. S., Petrelli, R., De la Mora-Rey, T.,
Tiwari, D., Liu, F., Dawadi, S., Nandakumar, M., Rhee, K. Y.,
Schnappinger, D., Finzel, B. C., and Aldrich, C. C. (2015) Targeting
Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with
Nucleoside-Based Bisubstrate Adenylation Inhibitors. J. Med. Chem.
58, 7349−7369.
Tobin, D. M., Urdahl, K. B., Cosma, C. L., and Ramakrishnan, L.
2014) Mycobacteria manipulate macrophage recruitment through
coordinated use of membrane lipids. Nature 505, 218−222.
7) Goldberg, M. F., Saini, N. K., and Porcelli, S. A. (2014) Evasion
(
(
(23) Sogi, K. M., Gartner, Z. J., Breidenbach, M. A., Appel, M. J.,
Schelle, M. W., and Bertozzi, C. R. (2013) Mycobacterium tuberculosis
Rv3406 is a type II alkyl sulfatase capable of sulfate scavenging. PLoS
One 8, e65080.
(
8) Ganapathy, U., Marrero, J., Calhoun, S., Eoh, H., de Carvalho, L.
P. S., Rhee, K., and Ehrt, S. (2015) Two enzymes with redundant
fructose bisphosphatase activity sustain gluconeogenesis and virulence
in Mycobacterium tuberculosis. Nat. Commun. 6, 7912.
(
24) Epp, J. B., and Widlanski, T. S. (1999) Facile Preparation of
Nucleoside-5′-carboxylic Acids. J. Org. Chem. 64, 293−295.
25) Gallo-Rodriguez, C., Ji, X.-d., Melman, N., Siegman, B. D.,
(
(
9) Purushothaman, S., Gupta, G., Srivastava, R., Ramu, V. G., and
Sanders, L. H., Orlina, J., Fischer, B., Pu, Q., and Olah, M. E. (1994)
Structure-Activity Relationships of N6-Benzyladenosine-5′-urona-
mides as A3-Selective Adenosine Agonists. J. Med. Chem. 37, 636−646.
Surolia, A. (2008) Ligand specificity of group I biotin protein ligase of
Mycobacterium tuberculosis. PLoS One 3, e2320.
(
10) Paparella, A. S., Soares da Costa, T. P., Yap, M. Y., Tieu, W.,
(26) Okada, M., Iwashita, S., and Koizumi, N. (2000) Efficient
Wilce, M. C., Booker, G. W., Abell, A. D., and Polyak, S. W. (2014)
Structure guided design of biotin protein ligase inhibitors for antibiotic
discovery. Curr. Top. Med. Chem. 14, 4−20.
general method for sulfamoylation of a hydroxyl group. Tetrahedron
Lett. 41, 7047−7051.
(27) Bligh, C. M., Anzalone, L., Jung, Y. C., Zhang, Y., and Nugent,
(
11) Feng, J., Paparella, A. S., Booker, G. W., Polyak, S. W., and Abell,
W. A. (2014) Preparation of both C5′ epimers of 5′-C-
methyladenosine: reagent control trumps substrate control. J. Org.
Chem. 79, 3238−3243.
A. D. (2016) Biotin Protein Ligase Is a Target for New Antibacterials.
Antibiotics 5, 26.
(
12) Tiwari, D., Park, S. W., Essawy, M., Dawadi, S., Mason, A.,
(28) Somu, R. V., Boshoff, H., Qiao, C., Bennett, E. M., Barry, C. E.,
Nandakumar, M., Zimmerman, M., Mina, M., Ho, H. P., Engelhart, C.,
Ioerger, T., Sacchettini, J., Rhee, K. Y., Ehrt, S., Aldrich, C. C., Dartois,
V., and Schnappinger, D. (2018) Targeting protein biotinylation
enhances tuberculosis chemotherapyy. Sci. Transl. Med. 10, eaal1803.
and Aldrich, C. C. (2006) Rationally Designed Nucleoside Antibiotics
That Inhibit Siderophore Biosynthesis of Mycobacterium tuberculosis.
J. Med. Chem. 49, 31−34.
(29) Velazquez-Campoy, A., and Freire, E. (2006) Isothermal
(
13) Brown, P. H., Cronan, J. E., Grøtli, M., and Beckett, D. (2004)
titration calorimetry to determine association constants for high-
The biotin repressor: modulation of allostery by corepressor analogs. J.
Mol. Biol. 337, 857−869.
affinity ligands. Nat. Protoc. 1, 186−191.
(30) Kovaleva, E. G., and Lipscomb, J. D. (2008) Versatility of
(
14) Sittiwong, W., Cordonier, E. L., Zempleni, J., and Dussault, P. H.
biological non-heme Fe(II) centers in oxygen activation reactions. Nat.
Chem. Biol. 4, 186−193.
(
2014) β-Keto and β-hydroxyphosphonate analogs of biotin-5′-AMP
are inhibitors of holocarboxylase synthetase. Bioorg. Med. Chem. Lett.
4, 5568−5571.
15) Soares da Costa, T. P., Tieu, W., Yap, M. Y., Zvarec, O., Bell, J.
(31) Lipscomb, J. D. (2008) Mechanism of extradiol aromatic ring-
2
(
cleaving dioxygenases. Curr. Opin. Struct. Biol. 18, 644−649.
32) Galvao, T. C., Lima, C. R., Gomes, L. H. F., Pagani, T. D.,
Ferreira, M. A., Goncalves, A. S., Correa, P. R., Degrave, W. M., and
Mendonca-Lima, L. (2014) The BCG Moreau RD16 deletion
(
̃
M., Turnidge, J. D., Wallace, J. C., Booker, G. W., Wilce, M. C. J.,
Abell, A. D., and Polyak, S. W. (2012) Biotin analogues with
antibacterial activity are potent inhibitors of biotin protein ligase. ACS
Med. Chem. Lett. 3, 509−514.
̧
̧
inactivates a repressor reshaping transcription of an adjacent gene.
Tuberculosis 94, 26−33.
(
16) Tieu, W., Soares da Costa, T. P., Yap, M. Y., Keeling, K. L.,
(33) Gopalan, A., Bhagavat, R., Chandra, N., Subbarao, S. H., Raja,
Wilce, M. C. J., Wallace, J. C., Booker, G. W., Polyak, S. W., and Abell,
A. D. (2013) Optimising in situ click chemistry: the screening and
identification of biotin protein ligase inhibitors. Chem. Sci. 4, 3533−
A., and Bethunaickan, R. (2018) Biophysical and biochemical
characterization of Rv3405c, a tetracycline repressor protein from
Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 496, 799−
3
(
537.
17) Tieu, W., Jarrad, A. M., Paparella, A. S., Keeling, K. A., Soares da
8
(
05.
34) Schmidt, B., Selmer, T., Ingendoh, A., and von Figura, K. (1995)
Costa, T. P., Wallace, J. C., Booker, G. W., Polyak, S. W., and Abell, A.
D. (2014) Heterocyclic acyl-phosphate bioisostere-based inhibitors of
Staphylococcus aureus biotin protein ligase. Bioorg. Med. Chem. Lett. 24,
A novel amino acid modification in sulfatases that is defective in
multiple sulfatase deficiency. Cell 82, 271−278.
(35) Bebrone, C. (2007) Metallo-beta-lactamases (classification,
4
(
689−4693.
activity, genetic organization, structure, zinc coordination) and their
18) Paparella, A. S., Lee, K. J., Hayes, A. J., Feng, J., Feng, Z., Cini,
superfamily. Biochem. Pharmacol. 74, 1686−1701.
D., Deshmukh, S., Booker, G. W., Wilce, M. C. J., Polyak, S. W., and
Abell, A. D. (2018) Halogenation of Biotin Protein Ligase Inhibitors
Improves Whole Cell Activity against Staphylococcus aureus. ACS Infect.
Dis. 4, 175.
(36) Diez-Roux, G., and Ballabio, A. (2005) Sulfatases and human
disease. Annu. Rev. Genomics Hum. Genet. 6, 355−379.
37) Hausinger, R. P. (2004) FeII/alpha-ketoglutarate-dependent
hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. Biol. 39,
(
(
19) Feng, J., Paparella, A. S., Tieu, W., Heim, D., Clark, S., Hayes, A.,
2
1−68.
Booker, G. W., Polyak, S. W., and Abell, A. D. (2016) New Series of
BPL Inhibitors To Probe the Ribose-Binding Pocket of Staph-
ylococcus aureus Biotin Protein Ligase. ACS Med. Chem. Lett. 7, 1068−
(38) Neres, J., Hartkoorn, R. C., Chiarelli, L. R., Gadupudi, R., Pasca,
M. R., Mori, G., Venturelli, A., Savina, S., Makarov, V., Kolly, G. S.,
Molteni, E., Binda, C., Dhar, N., Ferrari, S., Brodin, P., Delorme, V.,
Landry, V., de Jesus Lopes Ribeiro, A. L., Farina, D., Saxena, P., Pojer,
F., Carta, A., Luciani, R., Porta, A., Zanoni, G., De Rossi, E., Costi, M.
P., Riccardi, G., and Cole, S. T. (2015) 2-Carboxyquinoxalines Kill
Mycobacterium tuberculosis through Noncovalent Inhibition of DprE1.
ACS Chem. Biol. 10, 705−714.
(39) Bolla, J. R., Do, S. V., Long, F., Dai, L., Su, C. C., Lei, H. T.,
Chen, X., Gerkey, J. E., Murphy, D. C., Rajashankar, K. R., Zhang, Q.,
and Yu, E. W. (2012) Structural and functional analysis of the
1
(
072.
20) Duckworth, B. P., Geders, T. W., Tiwari, D., Boshoff, H. I.,
Sibbald, P. A., Barry, C. E., III, Schnappinger, D., Finzel, B. C., and
Aldrich, C. C. (2011) Bisubstrate Adenylation Inhibitors of Biotin
Protein Ligase from Mycobacterium tuberculosis. Chem. Biol. 18, 1432−
1
(
441.
21) Shi, C., Tiwari, D., Wilson, D. J., Seiler, C. L., Schnappinger, D.,
and Aldrich, C. C. (2013) Bisubstrate Inhibitors of Biotin Protein
K
ACS Infect. Dis. XXXX, XXX, XXX−XXX