10.1002/anie.201707098
Angewandte Chemie International Edition
COMMUNICATION
[2]
M. Asadi, K. Kim, C. Liu, A. V. Addepalli, P. Abbasi, P. Yasaei, P.
Phillips, A. Behranginia, J. M. Cerrato, R. Haasch, P. Zapol, B. Kumar,
R. F. Klie, J. Abiade, L. A. Curtiss, A. Salehi-Khojin, Science 2016, 353,
467−470.
[3]
[4]
J. Gong, L. Zhang, Z. J. Zhao, Angew. Chem. Int. Ed. 2017, DOI:
10.1002/anie.201612214;
10.1002/ange.201612214.
Angew.
Chem.
2017,
DOI:
H. Won, H. Shin, J. Koh, J. Chung, H. S. Lee, H. Kim, S. I. Woo, Angew.
Chem. Int. Ed. 2016, 55, 9297−9300; Angew. Chem. 2016, 128,
9443−9446.
[5]
[6]
D. Raciti, K. J. Livi, C. Wang, Nano Lett. 2015, 15, 6829−6835.
D. A. Torelli, S. A. Francis, J. C. Crompton, A. Javier, J. R. Thompson,
B. S. Brunschwig, M. P. Soriaga, N. S. Lewis, ACS Catal. 2016, 16,
2100−2104.
[7]
S. Rasul, D. H. Anjum, A. Jedidi, Y. Minenkov, L. Cavallo, K. Takanabe,
Angew. Chem. Int. Ed. 2015, 54, 2146−2150; Angew. Chem. 2015, 127,
2174−2178.
Figure 4. Calculated reaction energy profiles for CO2 electroreduction to form
CO (top) and HCOOH (bottom) on the PdSnO2 surface. PdSnO2 represents
the configuration with almost half Pd atoms are substituted by Sn atoms, in
which the surface composition of palladium oxide reach the maximum (for
more detials, see SI computational section).
[8]
[9]
D. Kim, J. Resasco, Y. Yu, A. Mohamed, P. Yang, Nat. Comm. 2014, 5,
4948.
S. Sarfraz, A. T. Garcia-Esparza, A. Jedidi, L. Cavallo, K. Takanabe,
ACS Catal. 2016, 6, 2842−2851.
[10] E. J. Coleman, A. C. Co, ACS Catal. 2015, 5, 7299−7311.
[11] A. Stassi, I. Gatto, G. Monforte, V. Baglio, E. Passalacqua, V.
Antonucci, A. S. Arico, J. Power Sources. 2012, 208, 35−45.
[12] J. L. Qiao, Y. Y. Liu, F. Hong, J. J. Zhang, Chem. Soc. Rev. 2014, 43,
631−675.
Our results indicated that the preferred intermediates and
most favourable pathways during CO2 electroreduction reaction
were highly dependent on the surface configurations of alloy
catalysts. The alloy catalyst PdSn/C with a Pd/Sn molar ratio of
one possessed the lowest Pd(0)/Pd(II) ratio, leading to the
exclusive formation of formic acid. On the basis of our DFT
calculations, we concluded that only on the PdSnO2 surface
does HCOO* and HCOOH* remain the most favoured species,
which is consistent with the experimental findings.
In conclusion, a simple strategy is illustrated for selective
synthesis of formic acid from CO2 electroreduction, which is
attributed to the tuning of surface electronic structures of
supported Pd-Sn alloy NPs. The electrocataytic activity and
selectivity are highly dependent on the surface configurations, in
which formic acid with nearly 100% FE at the lowest
overpotential of -0.26 V was produced on the PdSn alloy surface
with optimal surface Pd, Sn and O configuration. Our findings
are important for the further development of low cost, high
activity and high selectivity alloy catalysts for CO2
electrochemical conversion, with the potential for the efficient
utilization of CO2.
[13] P. S. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S.
Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, A. Nilsson, Nat. Chem.
2010, 2, 454−460.
[14] P. He, L. Ma, Z. Shi, G. Y. Guo, S. M. Zhou, Phys. Rev. Lett. 2012, 109,
066402.
[15] C. Zhang, S. Y. Hwang, A. Trout, Z. Peng, J. Am. Chem. Soc. 2014,
136, 7805−7808.
[16] Z. C. Zhang, B. Xu, X. Wang, Chem. Soc. Rev. 2014, 43, 7870−7886.
[17] D. A. Bulushev, M. Zacharska, E. V. Shlyakhova, A. L. Chuvilin, Y. Guo,
S. Beloshapkin, A. V. Okotrub, L. G. Bulusheva, ACS Catal. 2016, 6,
681−691.
[18] Q. L. Zhu, N. Tsumori, Q. Xu, J. Am. Chem. Soc. 2015, 137,
11743−11748.
[19] Q. Fu, F. Yang, X. Bao, Acc. Chem. Res. 2013, 46, 1692−1701.
[20] Jin, S. A.; Kwon, K.; Park, C.; Chang, H. Catal. Today 2011, 164,
176−180.
[21] Puthiyapura, V. K.; Brett, D. J.; Russell, A. E.; Lin, W. F.; Hardacre, C.
ACS Appl. Mater. Interfaces 2016, 8, 12859−12870.
[22] V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A.
Lucas, N. M. Markovic, Science 2007, 315, 493−497.
[23] X. Min, M. W. Kanan, J. Am. Chem. Soc. 2015, 137, 4701−4708.
[24] H. Huang, H. Jia, Z. Liu, P. Gao, J. Zhao, Z. Luo, J. Yang, J. Zeng,
Angew. Chem. Int. Ed. 2017, 56, 3594−358; Angew. Chem. 2017, 129,
3648−3652.
Acknowledgements
[25] Y. Chen, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 1986−1989.
[26] B. Kumar, V. Atla, J. P. Brian, S. Kumari, T. Q. Nguyen, M. Sunkara, J.
M. Spurgeon, Angew. Chem. Int. Ed. 2017, 56, 3645−3649; Angew.
Chem. 2017, 129, 3699−3703.
This work was supported by the Hundred Talents Program of
Chinese Academy of Sciences. We acknowledge the support of
the Ministry of Science and Technology under contract of
2016YFA0202800.
[27]
W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang, F. Jiao, J. Am.
Chem. Soc. 2017, 139, 1885−1893.
[28] N. Sreekanth, K. L. Phani, Chem. Commun. 2014, 50, 11143−11146.
[29] M. Dunwell, Q. Lu, J. M. Heyes, J. Rosen, J. G. Chen, Y. Yan, F. Jiao, B.
Xu, J. Am. Chem. Soc. 2017, 139, 3774−3783.
Keywords: CO2 conversion • electrochemical reduction • Pd-Sn
alloy • formic acid
[30] C. Cui, J. Han, X. Zhu, X. Liu, H. Wang, D. Mei, Q. Ge, J. Catal. 2016,
343, 257−265.
[1]
S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie,
Nature 2016, 529, 68−71.
This article is protected by copyright. All rights reserved.