D. Mandelli, Tetrahedron Lett., 2005, 46, 4563; (b) D. H. R. Barton and
B. Hu, Pure Appl. Chem., 1997, 69, 1941; (c) D. H. R. Barton and
D. K. Taylor, Pure Appl. Chem., 1996, 68, 497.
system are simple and commercially available and the reaction can
be performed at rt. To the best of our knowledge, the system
described here is the simplest and most practical iron-catalyzed
epoxidation procedure available for olefins today. Efforts are
underway in our group aimed at realizing the asymmetric version
of this reaction.
11 (a) W. Nam, R. Ho and J. S. Valentine, J. Am. Chem. Soc., 1991, 113,
7052; (b) T. G. Traylor, S. Tsuchiya, Y. S. Byun and C. Kim, J. Am.
Chem. Soc., 1993, 115, 2775; (c) D. Dolphin, T. G. Traylor and L. Y. Xie,
Acc. Chem. Res., 1997, 30, 251.
12 (a) For an iron(II) tpa complex (tpa = tris-(2-pyridylmethyl)amine)
catalyzed epoxidation of olefins by in situ formation of peracetic acid
from H2O2 and HOAc applied to a few substrates affording a mixture
of epoxides and diols, see: M. Fujita and L. Que, Jr., Adv. Synth. Catal.,
2004, 346, 190. (b) for epoxidation of cyclooctene by H2O2 catalyzed by
iron complexes yielding a mixture of epoxide and diol, see: K. Chen,
M. Costas, J. Kim, A. T. Tipton and L. Que, Jr., J. Am. Chem. Soc.,
2002, 124, 3026. (c) for oxidation of olefins by activation of H2O2 with
anhydrous FeCl3 yielding a mixture of epoxide, dimer and aldehydes,
see: H. Sugimoto and D. T. Sawyer, J. Org. Chem., 1985, 50, 1786. (d)
H. Sugimoto, L. Spencer and D. T. Sawyer, Proc. Natl. Acad. Sci.
U. S. A., 1987, 84, 1731.
13 mep = N,N9-dimethyl-N,N9-bis(2-pyridylmethyl)-ethane 1,2-diamine,
see: M. C. White, A. G. Doyle and E. N. Jacobsen, J. Am. Chem.
Soc., 2001, 123, 7194.
14 Stack’s Fe-phenanthroline system also epoxidizes olefins with
CH3CO3H, see: G. Dubois, A. Murphy and T. D. P. Stack,
Org. Lett., 2003, 5, 2469.
15 (a) M. K. Tse, S. Bhor, M. Klawonn, C. Do¨bler and M. Beller,
Tetrahedron Lett., 2003, 44, 7479; (b) S. Bhor, M. K. Tse, M. Klawonn,
C. Do¨bler, W. Ma¨gerlein and M. Beller, Adv. Synth. Catal., 2004, 346,
263; (c) M. Klawonn, M. K. Tse, S. Bhor, C. Do¨bler and M. Beller,
J. Mol. Catal. A: Chem., 2004, 218, 13.
16 M. K. Tse, C. Do¨bler, S. Bhor, M. Klawonn, W. Ma¨gerlein, H. Hugl
and M. Beller, Angew. Chem., 2004, 116, 5367 (Angew. Chem., Int. Ed.,
2004, 43, 5255).
We thank the State of Mecklenburg-Western Pommerania, the
Federal Ministry of Education and Research (BMBF) and the
Deutsche Forschungsgemeinschaft (SPP 1118 and Leibniz-prize)
for financial support. Dr D. Michalik, Mrs C. Mewes, Mrs A.
Lehmann, Mrs C. Fisher and Mrs S. Buchholz (LIKAT) are
acknowledged for their technical and analytical support.
Notes and references
1 (a) M. J. Nelson and S. Seitz, in Active Oxygen in Biochemistry, ed. J. S.
Valentine, C. S. Foote, A. Greenberg and J. F. Leibman, Chapman and
Hill, Glasgow, 1995, pp. 276; (b) O. Hayaishi, in Molecular Mechanism
Of Oxygen Activation, ed. O. Hayaishi, Academic Press, New York,
1974, pp. 1.
2 J. T. Groves, R. C. Haushalter, M. Nakamura, T. E. Nemo and
B. J. Evans, J. Am. Chem. Soc., 1981, 103, 2884.
3 (a) C. Colas and P. R. O. Mantellano, Chem. Rev., 2003, 103, 2305; (b)
P. R. O. Montellano, Acc. Chem. Res., 1998, 31, 543; (c) M. Sono,
M. P. Roach, E. D. Coulter and J. H. Dawson, Chem. Rev., 1996, 96,
2841.
4 (a) For a recent review on catalytic enantioselective epoxidation using
chiral metalloporphyrins, see: E. Rose, B. Andrioletti, S. Zrig and
M. Q. Etheve, Chem. Soc. Rev., 2005, 34, 573. (b) For an excellent
review on metalloporphyrin-catalyzed oxidation reactions, see:
B. Meunier, Chem. Rev., 1992, 92, 1411.
17 M. K. Tse, M. Klawonn, S. Bhor, C. Do¨bler, G. Anilkumar, H. Hugl,
W. Ma¨gerlein and M. Beller, Org. Lett., 2005, 7, 987.
5 (a) K. A. Jørgensen, in Transition Metals For Organic Synthesis, ed.
M. Beller and C. Bolm, Wiley-VCH, Weinheim, 1998, vol. 2, pp. 157;
(b) K. Furuhashi, in Chirality In Industry, ed. A. N. Collins, G. N.
Sheldrake and J. Crosby, John Wiley, England, 1992, pp. 167; (c)
U. Sundermeier, C. Do¨bler and M. Beller, in Modern Oxidation
Methods, ed. J. E. Ba¨ckvall, Wiley-VCH, Weinheim, 2004, pp. 1.
6 For a list of common oxidants, their active oxygen contents and waste
products, see: H. Adolfsson, in Modern Oxidation Methods, ed. J. E.
Ba¨ckvall, Wiley-VCH, Weinheim, 2004, pp. 22.
7 For a recent review on transition metal catalyzed oxidation of organic
substrates with molecular oxygen, see: T. Punniyamurthy, S. Velusamy
and J. Iqbal, Chem. Rev., 2005, 105, 2329; for use of molecular oxygen
or air in oxidation reactions, see: (a) U. Sundermeier, C. Do¨bler,
G. M. Mehltretter, W. Baumann and M. Beller, Chirality, 2003, 15, 127;
(b) C. Do¨bler, G. M. Mehltretter, U. Sundermeier and M. Beller,
J. Organomet. Chem., 2001, 621, 70; (c) C. Do¨bler, G. M. Mehltretter,
U. Sundermeier and M. Beller, J. Am. Chem. Soc., 2000, 122, 10289; (d)
G. M. Mehltretter, C. Do¨bler, U. Sundermeier and M. Beller,
Tetrahedron Lett., 2000, 41, 8083; (e) C. Do¨bler, G. M. Mehltretter
and M. Beller, Angew. Chem., 1999, 111, 3211 (Angew. Chem., Int. Ed.,
1999, 38, 3026).
18 (a) S. Bhor, G. Anilkumar, M. K. Tse, M. Klawonn, C. Do¨bler,
B. Bitterlich, A. Grotevendt and M. Beller, Org. Lett., 2005, 7, 3393; (b)
G. Anilkumar, S. Bhor, M. K. Tse, M. Klawonn, B. Bitterlich and
M. Beller, Tetrahedron: Asymmetry, 2005, 16, 3536.
19 Typically, iron complexes were generated by heating an iron source,
ligand and co-ligand (pyridine-2,6-dicarboxylic acid) in various solvents
at 65 uC for 1 h. After cooling to room temperature, commercially
available 30% H2O2 was added using a syringe pump.
20 For the effect of pyridine on the reactivity and selectivity of epoxide
formation from alkenes using H2O2 and MTO, see: (a) J. Rudolph,
K. L. Reddy, J. P. Chiang and K. B. Sharpless, J. Am. Chem. Soc.,
1997, 119, 6189; (b) W. D. Wang and J. H. Espenson, J. Am. Chem.
Soc., 1998, 120, 11335; (c) For the effect of additives, see: G. B. Shulpin,
J. Mol. Catal. A: Chem., 2002, 189, 39.
21 P. Laine, A. Gourdon and J. P. Launay, Inorg. Chem., 1995, 34, 5129.
22 For the structure of some iron-dipicolinic acid complexes, see ref. 21;
P. Laine, A. Gourdon and J. P. Launay, Inorg. Chem., 1995, 34, 5156.
23 J. M. Elkins, M. J. Ryle, I. J. Clifton, J. C. Dunning Hotopp, J. S. Lloyd,
N. I. Burzlaff, J. E. Baldwin, R. P. Hausinger and P. L. Roach,
Biochemistry, 2002, 41, 5185.
24 E. L. Hegg, A. K. Whiting, R. E. Saari, J. McCracken, R. P. Hausinger
and L. Que, Jr., Biochemistry, 1999, 38, 16714.
25 A. Karlsson, J. V. Parales, R. E. Parales, D. T. Gibson, H. Eklund and
S. Ramaswamy, Science, 2003, 299, 1039.
26 (a) For a recent report on biomimetic approach to oxidation catalysis,
see: A. Berkessel, Pure Appl. Chem., 2005, 77, 1277(b) L. Que, Jr. and
R. Y. N. Ho, Chem. Rev., 2004, 104, 2607; (c) M. Coastas, M. P. Mehn,
M. P. Jensen and L. Que, Jr., Chem. Rev., 2004, 104, 939.
8 For excellent reviews on metal catalyzed epoxidation using H2O2, see:
(a) B. S. Lane and K. Burgess, Chem. Rev., 2003, 103, 2457; (b)
G. Grigoropoulou, J. H. Clark and J. A. Elings, Green Chem., 2003, 5,
1; (c) I. W. C. E. Arends and R. A. Sheldon, Top. Catal., 2002, 19, 133.
9 For a catalytic epoxidation using H2O2 and MnSO4, see: B. S. Lane and
K. Burgess, J. Am. Chem. Soc., 2001, 123, 2933.
10 For alkane oxygenation with H2O2 catalyzed by FeCl3, see: (a)
G. B. Shulpin, C. C. Golfeto, G. Suss-Fink, L. S. Shulpina and
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 289–291 | 291