Page 5 of 6
Please Gd roe en no tC ha ed mj u iss tt r my argins
Journal Name
COMMUNICATION
quinuclidine. (f) Stern-Volmer plot of 4CzIPN at different
concentrations of quinuclidine.
Acknowledgements
DOI: 10.1039/D0GC03697H
This work was supported by the National Natural Science
Foundation of China (Project 21672104, 21502097) and the Priority
Academic Program Development of Jiangsu Higher Education
Institutions.
Based on the above observations as well as some previous
literature reports, a possible mechanism of this reaction was
proposed (Scheme 7). Initially, the photocatalyst 4CzIPN was
excited into 4CzIPN* under the irradiation of blue LEDs. A single
electron was transferred from quinuclidine to 4CzIPN*, resulting in
Notes and references
•
−
the generation of a quinuclidinium radical cation and a 4CzIPN
2
1a-b
1
3
1
For selected reviews, please see: (a) P. K. Pooni and G. A.
Showell, Mini-Rev. Med. Chem., 2006, 6, 1169−1177; (b) A. K.
Franz and S. O. Wilson, J. Med. Chem., 2013, 56, 388−405; (c)
R. Ramesh and D. S. Reddy, J. Med. Chem., 2018, 61,
radical anion.
Meanwhile,
O
2
generated from
2
O with
2
1c
activated 4CzIPN* under light radiation. Subsequently, another
1
single-electron-transfer (SET) process occurred between O
2
and
•
−
•−
4
CzIPN , giving O
2
and regenerating 4CzIPN for the next
Then, the resulting quinuclidinium radical
3
779−3798.
2
1d-e
photoredox cycle.
2
(a) N. Mizoshita, T. Tani and S. Inagaki, Chem. Soc. Rev.,
2
011, 40, 789–800; (b) T. A. Su, H. Li, R. S. Klausen, N. T. Kim,
cation served as the HAT catalyst to produce the t-
butyldimethylsilyl radical by abstracting the hydrogen atom from t-
butyldimethylsilane. After that, the addition of t-butyldimethylsilyl
radical to 1a formed the intermediate I. Finally, the intermediate I
M. Neupane, J. L. Leighton, M. L. Steigerwald, L.
Venkataraman and C. Nuckolls, Acc. Chem. Res., 2017, 50,
1
088−1095.
3
4
R. D. Taylor, M. MacCoss and A. D. G. Lawson, J. Med. Chem.,
2014, 57, 5845−5859.
•−
underwent direct hydrogen atom transfer to O
2
to give the
(a) S. E. Denmark and J. M. Kallemeyn, Org. Lett., 2003, 5,
desired product 3a.
3
483−3486; (b) A. Hamze, O. Provot, M. Alami and J.-D.
Brion, Org. Lett., 2006, 8, 931−934; (c) E. McNeill, T. E.
Barder and S. L. Buchwald, Org. Lett., 2007, 9, 3785−3788.
L. Guo, A. Chatupheeraphat and M. Rueping, Angew. Chem.,
Int. Ed., 2016, 55, 11810–11813.
*
4
CzIPN
4CzIPN
3O2
5
1O2
SET
4
CzIPN
6
7
U. Frick and G. Simchen, Synthesis, 1984, 929–930.
For selected examples and review, please see: (a) H. T. Klare,
M. Oestreich, J. Ito, H. Nishiyama, Y. Ohki and K. Tatsumi, J.
Am. Chem. Soc., 2011, 133, 3312–3315; (b) Y. Ma, B. Wang,
L. Zhang and Z. Hou, J. Am. Chem. Soc., 2016, 138,
O2
4
CzIPN
*
CzIPN
4
HO2-
3
663−3666; (c) Q. Yin, H. F. T. Klare and M. Oestreich,
SET
N
N
O
N
N
O
Angew. Chem., Int. Ed., 2016, 55, 3204–3207; (d) Y. Han, S.
Zhang, J. He and Y. Zhang, J. Am. Chem. Soc., 2017, 139,
Py
N
Si
Si
N
7
399−7407; (e) S. Bähr and M. Oestreich, Angew. Chem., Int.
I
3a
HAT
Ed., 2017, 56, 52–59.
Si
N
PyH
8
9
Q.-A. Chen, H. F. T. Klare and M. Oestreich, J. Am. Chem.
Soc., 2016, 138, 7868−7871.
H
N
N
O
SiH
(a) A. A. Toutov, W.-B. Liu, K. N. Betz, B. M. Stoltz and R. H.
Grubbs, Nat. Protoc., 2015, 10, 1897−1903; (b) A. A. Toutov,
W.-B. Liu, K. N. Betz, A. Fedorov, B. M. Stoltz and R. H.
Grubbs, Nature, 2015, 518, 80−84; (c) Y. Gu, Y. Shen, C.
Zarate and R. Martin, J. Am. Chem. Soc., 2019, 141, 127−132.
0 (a) B. Lu and J. R. Falck, Angew. Chem., Int. Ed., 2008, 47,
1a
Scheme 7 Proposed mechanism.
1
7
2
508–7510; (b) C. Cheng and J. F. Hartwig, J. Am. Chem. Soc.,
015, 137, 592−595; (c) T. Wakaki, M. Kanai and Y. Kuninobu,
Conclusions
Org. Lett., 2015, 17, 1758−1761; (d) M. Murai, N. Nishinaka
and K. Takai, Angew. Chem., Int. Ed., 2018, 57, 5843–5847;
In conclusion, a direct and efficient strategy has been developed for
the C−H silylation of quinoxalinones by using a combination of
organic photocatalyst 4CzIPN and hydrogen atom transfer reagent
quinuclidine under ambient conditions. In this transition-metal-free
process, the silyl radicals generated in situ regioselectively added to
quinoxalinones or a series of electron-deficient heteroarenes with
high functional group tolerance. This methodology reported herein
offered an environmentally friendly way for the synthesis of
silylated heteroarenes.
(
e) C. Cheng and J. F. Hartwig, Science, 2014, 343, 853–857;
f) S. Wübbolt and M. Oestreich, Angew. Chem., Int. Ed.,
(
2015, 54, 15876–15879. (g) K. Devaraj, C. Sollert, C. Juds, P. J.
Gates and L. T. Pilarski, Chem. Commun., 2016, 52, 5868–
5
871; (h) H. Fang, L. Guo, Y. Zhang, W. Yao and Z. Huang,
Org. Lett., 2016, 18, 5624−5627.
1
1
1 C. Chatgilialoglu, Chem. Rev., 1995, 95, 1229−1251.
2 (a) Y. Yang, R.-J. Song, X.-H. Ouyang, C.-Y. Wang, J.-H. Li and
S. Luo, Angew. Chem., Int. Ed., 2017, 56, 7916–7919; (b) Y.
Lan, X.-H. Chang, P. Fan, C.-C. Shan, Z.-B. Liu, T.-P. Loh and Y.-
H. Xu, ACS Catal., 2017, 7, 7120−7125.
1
1
3 (a) Z. Yan, J. Xie and C. Zhu, Adv. Synth. Catal., 2017, 359,
4
153–4157; (b) Y. Yang, R.-J. Song, Y. Li, X.-H. Ouyang, J.-H. Li
Conflicts of interest
There are no conflicts to declare.
and D.-L. He, Chem. Commun., 2018, 54, 1441–1444.
4 (a) J. Gu and C. Cai, Chem. Commun., 2016, 52, 10779–
1
5
0782; (b) Z. Xu, L. Chai and Z.-Q. Liu, Org. Lett., 2017, 19,
573−5576; (c) R. Sakamoto, B.-N. Nguyen and K. Maruoka,
Asian J. Org. Chem., 2018, 7, 1085–1088.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins