JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
tuning the critical glucose concentration needed to induce
aggregate dissociation was incorporation of comonomers
within the boronic acid block. For example, dissociation at
lower glucose concentrations could potentially be achieved by
including comonomers that increase the overall hydrophilicity
of the responsive block. With this goal in mind, we investi-
gated the synthesis of PDMA-b-poly(APBA-stat-DMA) block
copolymers, where the DMA content within the responsive
block was tuned to adjust the sugar-responsive behavior.
From a series of RAFT polymerizations, the relative reactivity
ratios for APBAE and DMA were determined by the Kelen–
REFERENCES AND NOTES
1
Hoffman, A. S.; Stayton, P. S. Macromol. Symp. 2004, 207,
1
39–151.
2
Rzaev, Z. M. O.; Dincer, S.; Piskin, E. Prog. Polym. Sci. 2007,
32, 534–595.
3 Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober,
¨
C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.;
Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Nat.
Mater. 2010, 9, 101–113.
4
2
Roy, D.; Cambre, J. N.; Sumerlin, B. S. Prog. Polym. Sci.
010, 35, 278–301.
6
7,68
5 Alarcon, C. D. L. H.; Pennadam, S.; Alexander, C. Chem. Soc.
Rev. 2005, 34, 276–285.
Tud o€ s method
(rAPBAE ¼ 0.35 and r
¼ 0.58) (Support-
DMA
ing Information), suggesting that the copolymerization of
these two monomers led to a slight alternating tendency.
6
Pasparakis, G.; Vamvakaki, M. Polym. Chem. 2011, 2,
1
234–1248.
To investigate the possibility of tuning the sugar sensitivity,
block copolymers were synthesized with varying
APBAE:DMA ratios in the hydrophobic block. A PDMA macro-
CTA was chain extended by RAFT copolymerization of APBAE
and DMA. For a series of PDMA -b-poly(APBA -stat-DMA )
7 Flores, J. D.; Treat, N. J.; York, A. W.; McCormick, C. L.
Polym. Chem. 2011, 2, 1976–1985.
8 Schmaljohann, D. Adv. Drug Deliv. Rev. 2006, 58, 1655–1670.
9 Gil, E. S.; Hudson, S. M. Prog. Polym. Sci. 2004, 29,
1173–1222.
4
5
x
y
block copolymers with identical PDMA hydrophilic blocks
10 Yin, J.; Hu, H.; Wu, Y.; Liu, S. Polym. Chem. 2011, 2,
3
63–371.
and hydrophobic blocks with a constant total DP (x þ y ¼
1
2
1 Liu, T.; Qian, Y.; Hu, X.; Ge, Z.; Liu, S. J. Mater. Chem. 2012,
2, 5020–5030.
150), the aggregation and sugar-responsive behavior was
observed to be highly dependent on the composition of the
responsive block. Block copolymers with responsive blocks
that contained 78% and 60% DMA remained fully soluble
1
2
2 Miyata, T.; Uragami, T.; Nakamae, K. Adv. Drug Deliv. Rev.
002, 54, 79–98.
1
1
1
1
1
3 Qiu, Y.; Park, K. Adv. Drug Deliv. Rev. 2001, 53, 321–339.
4 Cheng, F.; Jakle, F. Polym. Chem. 2011, 2, 2122–2132.
5 Lorand, J. P.; Edwards, J. O. J. Org. Chem. 1959, 24, 769–774.
6 Cambre, J. N.; Sumerlin, B. S. Polymer 2011, 52, 4631–4643.
7 Pellon, J.; Schwind, L. H.; Guinard, M. J.; Thomas, W. M. J.
and were incapable of self-assembly at pH < pK . On the
a
other hand, DLS measurements of PAPBA150-b-PDMA45,
PDMA -b-poly(APBA113-stat-DMA37), and PDMA -b-poly
4
5
45
(APBA74-stat-DMA74) in aqueous medium indicated the pres-
ence of aggregates. While the PAPBA150-b-PDMA45 block co-
polymer required glucose concentrations greater than 182
mM to elicit dissociation, initial studies indicated that the
PDMA -b-poly(APBA -stat-DMA ) copolymer appeared to
Polym. Sci. 1961, 55, 161–167.
8 Shiomori, K.; Ivanov, A. E.; Galaev, I. Y.; Kawano, Y.; Mat-
tiasson, B. Macromol. Chem. Phys. 2004, 205, 27–34.
9 Kitano, S.; Koyama, Y.; Kataoka, K.; Okano, T.; Sakurai, Y. J.
Control. Release 1992, 19, 161–170.
0 Matsumoto, A.; Kurata, T.; Shiino, D.; Kataoka, K. Macro-
molecules 2004, 37, 1502–1510.
1 Matsumoto, A.; Ikeda, S.; Harada, A.; Kataoka, K. Biomacro-
molecules 2003, 4, 1410–1416.
2 Matsumoto, A.; Yoshida, R.; Kataoka, K. Biomacromolecules
1
4
5
74
74
1
dissociate at concentrations as low as 39 mM presumably
due to the introduction of the hydrophilic DMA moieties.
This technique holds possible promise for the ability to tune
the sugar response.
2
2
CONCLUSIONS
2
RAFT of APBAE and subsequent deprotection by a mild
transesterification process results in well-defined boronic
acid-containing (co)polymers. Block copolymers of PAPBA
and PDMA are capable of solution self-assembly to form
aggregates with pH- and sugar-responsive behavior. The
kinetics of aggregate dissociation in response to a change in
sugar concentration was shown to be dependent on block
copolymer concentration, pH, and the specific identity of the
sugar. The aggregates were shown to be capable of encapsu-
lating a model hydrophobic compound that could be subse-
quently released at high pH or high sugar concentrations.
These results further suggest boronic acid-based block copol-
ymer self-assemblies may hold promise in the area of con-
trolled release.
2004, 5, 1038–1045.
23 Samoei, G. K.; Wang, W.; Escobedo, J. O.; Xu, X.; Schnei-
der, H.-J.; Cook, R. L.; Strongin, R. M. Angew. Chem. Int. Ed.
2
006, 45, 5319–5322.
2
4 Li, S.; Davis, E. N.; Anderson, J.; Lin, Q.; Wang, Q. Bioma-
cromolecules 2009, 10, 113–118.
2
1
5 Hisamitsu, I.; Kataoka, K.; Okano, T.; Sakurai, Y. Pharm. Res.
997, 14, 289–293.
2
6 Zhang, Y.; Guan, Y.; Zhou, S. Biomacromolecules 2006, 7,
3
196–3201.
2
1
7 Ge, H.; Ding, Y.; Ma, C.; Zhang, G. J. Phys. Chem. B 2006,
10, 20635–20639.
2
2
8 Hoare, T.; Pelton, R. Macromolecules 2007, 40, 670–678.
9 Lapeyre, V.; Ancia, C.; Catargi, B.; Ravaine, V. J. Colloid
Interface Sci. 2008, 327, 316–323.
3
2
0 Lennarz, W. J.; Snyder, H. R. J. Am. Chem. Soc. 1960, 82,
169–2171.
ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under grant number DMR-0846792.
31 Letsinger, R. L.; Hamilton, S. B. J. Am. Chem. Soc. 1959, 81,
3009–3012.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 000, 000–000
9