2244
Y. Enomoto-Rogers et al. / Carbohydrate Polymers 87 (2012) 2237–2245
Enomoto-Rogers, Y., Kamitakahara, H., Nakayama, K., Takano, T. & Nakatsubo, F.
(2009). Synthesis and thermal properties of poly(methyl methacrylate)-graft-
(cellobiosylamine-C15). Cellulose, 16(3), 519–530.
Enomoto-Rogers, Y., Kamitakahara, H., Takano, T. & Nakatsubo, F. (2009). Cellu-
losic graft copolymer: Poly(methyl methacrylate) with cellulose side chains.
Biomacromolecules, 10(8), 2110–2117.
Enomoto-Rogers, Y., Kamitakahara, H., Yoshinaga, A. & Takano, T. (2011a). Synthesis
of diblock copolymers with cellulose derivatives 4. Self-assembled nanoparti-
cles of amphiphilic cellulose derivatives carrying a single pyrene group at the
reducing-end. Cellulose, 18(4), 1005–1014.
Enomoto-Rogers, Y., Kamitakahara, H., Yoshinaga, A. & Takano, T. (2011b). Water-
soluble low-molecular-weight cellulose chains radially oriented on gold
nanoparticles. Cellulose, 18(4), 929–936.
Enomoto, Y., Kamitakahara, H., Takano, T. &Nakatsubo, F. (2006). Synthesisofdiblock
copolymers with cellulose derivatives. 3. Cellulose derivatives carrying a single
pyrene group at the reducing-end and fluorescent studies of their self-assembly
systems in aqueous naoh solutions. Cellulose, 13(4), 437–448.
Fournier, D. & Du Prez, F. (2008). “Click” chemistry as a promising tool for side-chain
functionalization of polyurethanes. Macromolecules, 41(13), 4622–4630.
Gardner, K. H. & Blackwel, J. (1974). Structure of native cellulose. Biopolymers, 13(10),
1975–2001.
Hourdet, D., L’AIIoret, F. & Audebert, R. (1997). Synthesis of thermoassociative
copolymers. Polymer, 38(10), 2535–2547.
Ishikawa, A., Okano, T. & Sugiyama, J. (1997). Fine structure and tensile properties
of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer, 38(2),
463–468.
Isogai, A. & Usuda, M. (1991). Preparation of low-molecular-weight celluloses using
phosphoric-acid. Mokuzai Gakkaishi, 37(4), 339–344.
Isogai, A., Usuda, M., Kato, T., Uryu, T. & Atalla, R. H. (1989). Solid-state CP MAS 13
C
NMR-study of cellulose polymorphs. Macromolecules, 22(7), 3168–3172.
Ito, K., Tomi, Y. & Kawaguchi, S. (1992). Poly(ethylene oxide) macromonomers. 10.
Characterization and solution properties of the regular comb polymers with
polystyrene main chains and poly(ethylene oxide) side-chains. Macromolecules,
25(5), 1534–1538.
Kamitakahara, H., Enomoto, Y., Hasegawa, C. & Nakatsubo, F. (2005). Synthesis of
diblock copolymers with cellulose derivatives. 2. Characterization and thermal
properties of cellulose triacetate-block-oligoamide-15. Cellulose, 12(5), 527–541.
Kamitakahara, H. & Nakatsubo, F. (2005). Synthesis of diblock copolymers with
cellulose derivatives. 1. Model study with azidoalkyl carboxylic acid and cel-
lobiosylamine derivative. Cellulose, 12(2), 209–219.
Fig. 6. Wide angle X-ray diffractgrams of: (a) PPMA, (b) PPMA-g-(CTA2-C15),
(c) PPMA-g-(CELL2-C15), (d) PPMA-g-(CTA13-C15), (e) PPMA-g-(CELL13-C15), (f)
microcrystalline cellulose (cellulose I) and (g) regenerated cellulose (cellulose II).
4. Conclusions
Comb-shaped graft copolymers with cellulose triacetate (CTA)
side-chains, PPMA-g-(CTA2-C15) and PPMA-g-(CTA13-C15), were
prepared by grafting CTA2-C15-N3 and CTA13-C15-N3 (DPn = 13)
onto PPMA (DPw = 5.59 × 102), respectively, via “click chemistry”.
The numbers of CTA side-chains (X) of PPMA-g-(CTA2-C15) and
PPMA-g-(CTA13-C15) were calculated as 4.03 × 102 and 2.45 × 102,
respectively. The density of cellulose side-chains per main-chain
increased compared to that of the copolymers obtained via radical
copolymerization of a cellulose macromonomer. PPMA-g-(CELL2-
C15) and PPMA-g-(CELL13-C15) were successfully obtained by
deacetylation of PPMA-g-(CTA2-C15) and PPMA-g-(CTA13-C15),
respectively. PPMA-g-(CELL13-C15) exhibited reflection pattern of
cellulose II, suggesting the possibility that not only anti-parallel but
also parallel orientations of cellulose chains might give a crystal
structure of cellulose II.
Kamitakahara, H., Suzuki, T., Nishigori, N., Suzuki, Y., Kanie, O. & Wong, C. H. (1998).
A
lysoganglioside poly-l-glutamic acid conjugate as a picomolar inhibitor
of influenza hemagglutinin. Angewandte Chemie-International Edition, 37(11),
1524–1528.
Kang, H., Liu, W., He, B., Shen, D., Ma, L. & Huang, Y. (2006). Synthesis of amphiphilic
ethyl cellulose grafting poly(acrylic acid) copolymers and their self-assembly
morphologies in water. Polymer, 47(23), 7927–7934.
Kawaguchi, S., Mihara, T., Kikuchi, M., Lien, L. T. N. & Nagai, K. (2007). Synthesis
of methacrylate-ended poly(n-hexyl isocyanate) rodlike macromonomers and
their radical copolymerization behavior. Macromolecules, 40(4), 950–958.
Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Click chemistry: Diverse chemical
function from a few good reactions. Angewandte Chemie-International Edition,
40(11), 2004–2021.
Kolpak, F. J. & Blackwell, J. (1976). Determination of structure of cellulose ii. Macro-
molecules, 9(2), 273–278.
Ladmiral, V., Mantovani, G., Clarkson, G. J., Cauet, S., Irwin, J. L. & Haddleton, D. M.
(2006). Synthesis of neoglycopolymersby a combinationof “click chemistry” and
living radical polymerization. Journal of the American Chemical Society, 128(14),
4823–4830.
Langan, P., Nishiyama, Y. & Chanzy, H. (1999). A revised structure and hydrogen-
bonding system in cellulose ii from a neutron fiber diffraction analysis. Journal
of the American Chemical Society, 121(43), 9940–9946.
Narumi, A., Miura, Y., Otsuka, I., Yamane, S., Kitajyo, Y., Satoh, T., et al. (2006).
End-functionalization of polystyrene by malto-oligosaccharide generating
aggregation-tunable polymeric reverse micelle. Journal of Polymer Science Part A
– Polymer Chemistry, 44(16), 4864–4879.
Narumi, A., Otsuka, I., Matsuda, T., Miura, Y., Satoh, T., Kaneko, N., et al.
(2006). Glycoconjugated polymer: Synthesis and characterization of poly(vinyl
saccharide)-block-polystyrene-block-poly(vinyl saccharide) as an amphiphilic
aba triblock copolymer. Journal of Polymer Science Part A – Polymer Chemistry,
44(13), 3978–3985.
Nishio, Y. (2006). Material functionalization of cellulose and related polysaccharides
via diverse microcompositions. Polysaccharides II, 205, 97–151.
Ohno, K., Fukuda, T. & Kitano, H. (1998). Free radical polymerization of a sugar
residue-carrying styryl monomer with a lipophilic alkoxyamine initiator: Syn-
thesis of a well-defined novel glycolipid. Macromolecular Chemistry and Physics,
199(10), 2193–2197.
Acknowledgements
We acknowledge Graduate School of Agricultural and Life Sci-
ences, the University of Tokyo, for 500-MHz NMR equipments. This
study was supported in part by a Grant-in-Aid from a Research Fel-
lowships of the Japan Society for the Promotion of Science (JSPS)
for Young Scientists (Y.E-R), and by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Science, and Culture of
Japan (Nos. 18688009 and 21580205).
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
Ohno, K., Tsujii, Y. & Fukuda, T. (1998). Synthesis of a well-defined glycopolymer by
atom transfer radical polymerization. Journal of Polymer Science Part A – Polymer
Chemistry, 36(14), 2473–2481.
Poe, G. D., Jarrett, W. L., Scales, C. W. & McCormick, C. L. (2004). Enhanced coil
expansion and intrapolymer complex formation of linear poly(methacrylic acid)
containing poly(ethylene glycol) grafts. Macromolecules, 37(7), 2603–2612.
Scarpaci, A., Cabanetos, C., Blart, E., Montembault, V., Fontaine, L., Rodriguez,
V., et al. (2009). Postfunctionalization of poly(propargyl methacrylate) using
References
Dou, H. & Jiang, M. (2007). Fabrication, characterization and drug goading of
pH-dependent multi-morphologica nanoparticies based on cellulose. Polymer
International, 56(10), 1206–1212.
copper catalyzed
1 3-dipolar Huisgen cycloaddition: An easy route to