typical dimeric TTFs in π-dimer form found in the
literature.30,31 While the S2 band (750 nm) was found at a
similar wavelength to that in solution of 1a4+ (S2, 752 nm), a
bathochromic shift and clear enhancement were observed in S1
transition as compared to that in solution (approximately 900
nm), presumably due to its tight aggregation in the solid state.
2.
3.
4.
TTF Chemistry: Fundamental and Applications of
Tetrathiafulvalene, (Eds.: J. Yamada, T. Sugimoto),
Kodansha-Springer, Tokyo, 2004.
A. Jana, S. Bähring, M. Ishida, S. Goeb, D. Canevet, M.
Sallé, J. O. Jeppesen, J. L. Sessler, Chem. Soc. Rev. 2018,
47, 5614.
V. Croué, S. Goeb, M. Sallé, Chem. Commun. 2015, 51,
7275.
4. Conclusion
5.
6.
F. Pop, N. Avarvari, Chem. Commun. 2016, 52, 7906.
S. Bähring, H. D. Root, J. L. Sessler, J. O. Jeppesen, Org.
Biomol. Chem. 2019, 17, 2594.
D. Canevet, M. Sallé, G. Zhang, D. Zhu, Chem. Commun.
2009, 2245.
V. A. Azov, Tetrahedron Lett. 2016, 57, 5416.
M. Iyoda, M. Hasegawa, Y. Miyake, Chem. Rev. 2004,
104, 5085.
We have synthesized TTF tetramers (1a and 1b) anchored
to a 1,2,4,5-tetraethynylbenzene scaffold. DFT calculations of
1c and X-ray crystallographic analysis of 4c revealed a stable
molecular structure having intramolecular S••H interactions
7.
1
between two neighboring TTF moieties. H NMR experiments
8.
9.
of 1a at various temperatures and concentrations in CDCl3
suggest molecular self-assembly in solution, and the
association constant (Ka) was determined (21.5 ± 2.0 M–1 at
20 °C). CV of 1a in CH2Cl2 displayed two two-electron and one
four-electron reversible redox responses in concentrated
solution, although two four-electron redox waves were
observed in dilute conditions. These differences are indicative
of the intermolecular interactions between radical cations;
furthermore, electronic spectra of radical cations, prepared by
the chemical oxidation with Fe(ClO4)3, revealed their electronic
structures. The oxidized species of 1an+ (0 < n < 4) exhibited
the intrinsic absorption of TTF•+ (S2) and characteristic CR
bands (S1) in the NIR/IR region (1200-2500 nm), attributed to
MV states among the intermolecular TTF stacks. Moreover,
1a4+ exhibited blue-shifted maximum absorption because of
face-to-face stacked TTF•+ units in solution. One-dimensional
nanofibers of 1a were prepared from CHCl3-hexane solution.
The redox and electronic properties of the nanofibers were
investigated using CV technique on an ITO electrode.
Repeatable color changes were observed between 1a (purple),
1an+ (0 < n < 4) (brown and brownish green), and 1a4+ (green),
and each color is associated with their oxidation stage. While
the color of the nanofibers of 1a at each oxidation stage is
almost similar to that in solution, the electronic spectra of the
fibers are affected by the molecular packing in the nanofibers.
Although an approach to stationary doped-nanofibers without
continuous electrical injection is still developing, our approach
using the electrochemical oxidation of nanofibers on ITO
electrode shows a new application of post-doping nanofibers.
10. J. L. Segura, N. Martín, Angew. Chem. Int. Ed. 2001, 40,
1372.
11. G. Barin, A. Coskun, M. M. G. Fouda, J. F. Stoddart,
ChemPlusChem, 2012, 77, 159.
12. H. V. Scröder, H. Hupatz, A. J. Achazi, S. Sobottka, B.
Sarkar, B. Paulus, C. A. Schalley, Chem. Eur. J. 2017, 23,
2960.
13. V. Croué, S. Goeb, G. Szalóki, M. Allain, M. Sallé,
Angew. Chem. Int. Ed. 2015, 55, 1746.
14. J. S. Park, C. Bejger, K. R. Larsen, K. A. Nielsen, A. Jana,
V. M. Lynch, J. O. Jeppesen, F. Kim, J. L. Sessler, Chem.
Sci. 2012, 3, 2685.
15. M. Kato, K. Senoo, M. Yao, Y. Misaki, J. Mater. Chem. A
2014, 2, 6747.
16. J. Sun, Y. Wu, Y. Wang, Z. Liu, C. Cheng, K. J. Hartlieb,
M. R. Wasielewski, J. F. Stoddart, J. Am. Chem. Soc.
2015, 137, 13484.
17. F. B. Kaufman, A. H. Schroeder, E. M. Engler, S. R.
Kramer, J. Q. Chambers, J. Am. Chem. Soc. 1980, 102,
483.
18. C. Wang, A. S. Batsanov, M. R. Bryce, Chem. Commun.
2004, 578.
19. M. Hasegawa, S. Iwata, H. Matsuzawa, Y. Mazaki, Org.
Lett. 2011, 13, 4688.
20. K. Kobayakawa, M. Hasegawa, H. Sasaki, J. Endo, H.
Matsuzawa, K. Sako, J. Yoshida, Y. Mazaki, Chem. Asian
J. 2014, 9, 2751.
21. M. Hasegawa, J. Endo, S. Iwata, T. Shimasaki, Y. Mazaki,
Beilstein J. Org. Chem. 2015, 11, 972.
Acknowledgement
We thank Prof. Dr. Kenro Hashimoto (The Open University of
Japan), Mr. Jun-ichi Takano (Tokyo Metropolitan University),
Dr. Kota Daigoku (Kitasato University), Dr. Yoshiyuki
Kuwatani (VSN Inc.), and Prof. Dr. Yasuhiro Mazaki (Kitasato
University) for the helpful discussion. This work was partially
supported by the JSPS KAKENHI grants JP04J04136,
JP16K17871, and JP18K05092. All calculations were
performed at the Research Center for Computational Science,
Okazaki (Japan).
22. M. Hasegawa, D. Kurebayashi, H. Matsuzawa, Y. Mazaki,
Chem. Lett. 2018, 47, 989.
23. T. Biet, A. Fihey, T. Cauchy, N. Vanthuyne, C. Roussel, J.
Crassous, N. Avarvari, Chem. Eur. J. 2013, 19, 13160.
24. E. Gomar-Nadal, J. Veciana, C. Rovira, D. B. Amabilino,
Adv. Mater. 2005, 17, 2095.
25. M. Hasegawa, M. Iyoda, Chem. Soc. Rev. 2010, 39, 2420.
26. D. B. Amabilino, J. Puigmartí-Luis, Soft Matter. 2010, 6,
1605.
27. M. Iyoda, M. Hasegawa, Beilstein J. Org. Chem. 2015, 11,
1596.
Supporting Information
Instrumentation and materials, experimental procedures, NMR
spectra, crystal data, cyclic voltammograms, and DFT studies.
28. M. Iyoda, M. Hasegawa, H. Enozawa, Chem. Lett. 2007,
36, 1402.
29. S. S. Babu, S. Prasanthkumar, A. Ajayaghosh, Angew.
Chem. Int. Ed. 2012, 51, 1766.
References
30. M. Hasegawa, K. Daigoku, K. Hashimoto, H. Nishikawa,
M. Iyoda, Bull. Chem. Soc. Jpn. 2012, 85, 5.
31. M. Hasegawa, K. Nakamura, S. Tokunaga, Y. Baba, R.
Shiba, T. Shirahata, Y. Mazaki, Y. Misaki, Chem. Eur. J.
2016, 22, 10090.
1.
M. Hasegawa, M. Iyoda, Tetrathiafulvalene: A redox unit
for functional materials and a building block for
supramolecular self-assembly, in Organic Redox
Systems: Synthesis, Properties, and Applications, (Ed.: T.
Nishinaga), Wiley, 2015, pp. 89-125.
32. D.-W. Zhang, J. Tian, L. Chen, L. Zhang, Z.-T. Li, Chem.