F. Garnes-Portolés, Miguel Ángel Rivero-Crespo and A. Leyva-Pérez
Journal of Catalysis 392 (2020) 21–28
halide substituents is indicative that the activation of TMSCN 2
takes control at some point on the cyanosilylation rate, in accor-
dance with the expected acid/base mechanism of the reaction.
Acknowledgements
Financial support by MINECO (Spain) (Project CTQ 2017-86735-
P and Excellence Unit ‘‘Severo Ochoa” SEV-2016-0683) is acknowl-
edged. F.G.-P. thanks ITQ for a contract and M.A.R-C. thanks Iber-
drola Foundation for a fellowship.
3.2. Aerobic oxidation of alcohols/cyanosilylation reaction catalyzed by
Au-nCeO2
A sustainable organic synthesis demands the optimization of
chemical steps during reaction, if possible by grouping several
steps in one-pot and, ideally, over a recoverable solid catalyst
[23]. In view that the cyanosilylation reaction proceeds in both cat-
alytic amorphous and crystalline nanoceria, even under air, it was
envisioned here the use of metal-supported nanoceria catalysts as
bifunctional catalysts for the aerobic oxidation/cyanosilylation
reactions [24]. In this way, nanoceria will act as both catalyst
and support, enabling the cyanosilylation reaction after the
metal-catalyzed oxidation reaction. This approach does not only
engage two very different catalytic reactions, i.e. a dehydrogena-
tion reaction mediated by ROS and a typical Lewis acid-catalyzed
reaction [25], but also the activation of the bifunctional solid, since
one single calcination of the solid will concomitantly fix the metal
phase on the nanoceria surface, after impregnation with the metal
precursor, and also activate the nanoceria framework for the
cyanosilylation reaction, thus saving catalyst preparation steps.
Gold NPs on nanoceria (Au/nCeO2, 5 Au wt%), prepared by a
reported procedure with the commercial nanoceria catalyst active
for the cyanosilylation reaction as a support [24a], was chosen as a
model catalyst for the one-pot reaction. First, Au/nCeO2 was tested
in the aerobic oxidation of different alcohols, and the results show
that the corresponding aldehydes and ketones are obtained in
excellent yields with 1 Au mol% (Fig. S11). Then, Au/nCeO2 was
tested as a catalyst for the cyanosilylation reaction of acetophe-
none 1, with the amount of catalyst required for complete alcohol
oxidation (1 Au mol%, 30 nCeO2 wt%) and under optimized condi-
tions (see above), to give 81% yield of cyanohydrin 3, a better yield
than the corresponding bare nanoceria catalyst under the same
reaction conditions (56%). With this encouraging result in hand,
the Au/nCeO2 catalyst was employed for both aerobic oxidation/-
cyanosilylation reactions. The results for different alcohols are
shown in Fig. 7. Good to excellent yields were obtained in most
cases, which demonstrates that two mechanistically different
metal NP- and nanoceria-catalyzed reactions are compatible over
a same metal-supported nanoceria catalyst.
Appendix A. Supplementary material
Supplementary data to this article can be found online at
References
[1] For recent examples see: a) X.-P. Zeng, Z.-Y. Cao, X. Wang, L. Chen, F. Zhou, F.
Zhu, C.-H. Wang, J. Zhou J. Am. Chem. Soc., 138 (1) (2016), pp. 416–425,
10.1021/jacs.5b11476. b) W. Wang, M. Lou, J. Li, S. A. Pullarkat, M. Ma Chem.
Commun., 54 (24) (2018), pp. 3042–3044, 10.1039/c8cc00826d. c) L. Bao, X.
Kong, Y. Wang Asian J. Org. Chem., 9 (5) (2020), pp. 757–760, 10.1002/
ajoc.202000216. d) W.-Z. Wu, X.-P. Zeng, J. Zhou J. Org. Chem., (2020), Ahead of
Print, 10.1021/acs.joc.9b03347.
[3] a) T.L. Adelsbach, R.S. Tjeerdema, Rev. Environ. Contam. Toxicol., 176 (2002),
pp. 137, 10.1007/978-1-4899-7283-5_3. b) A.B. Smith, T. Tomioka, C.A. Risatti,
J.B. Sperry, C. Sfouggatakis Org. Lett., 10 (2008), pp. 4359, 10.1021/ol801792k.
[4] a) D.A. Evans, L.K. Truesdale, G.L. Carroll J.C.S. Chem. Comm., (1973), pp. 55–56,
10.1039/c39730000055. b) K. Manju, S. Trehan J. Chem. Soc., Perkin Trans. 1,
(1995), pp. 2383–2384, 10.1039/P19950002383. c) G.K.S. Prakash, H. Vaghoo,
C. Panja, V. Surampudi, R. Kultyshev, T. Mathew, G.A. Olah PNAS, 104 (2007),
pp. 3026–3030, 10.1073/pnas.0611309104.
[5] a) Y. Kikukawa, K. Suzuki, M. Sugawa, T. Hirano, K. Kamata, K. Yamaguchi, N.
Mizuno Angew. Chem., Int. Ed., 51 (2012), pp. 3686–3690, 10.1002/
ange.201200486. b) S. Rojas–Buzo, P. Garcia–Garcia, A. Corma
ChemCatChem., 9 (6) (2017), pp. 997–1004, 10.1002/cctc.201601407. c) S.
Zhang, B. Zhang, H. Liang, Y. Liu, Y. Qiao, Y. Qin Angew. Chem. Int. Ed., 57 (4)
(2018), pp. 1091–1095, 10.1002/anie.201712010 d) Y.M. Nie, S. H. Li, M. Y. Lin,
Jun. Chem. Commun., 56 (26) (2020), pp. 3809–3812, 10.1039/d0cc01216e.
[6] R. Dasgupta, S. Das, S. Hiwase, S.K. Pati, S. Khan, Organometallics, 38 (7) (2019),
pp. 1429–1435, 10.1021/acs.organomet.8b00673. b) J. Yin, H. Fei Dalton Trans.,
47 (12) (2018), pp. 4054–4058, 10.1039/c8dt00188j. c) B. Thirupathi, M.K.
Patil, B.M.B.M. Reddy Applied Catalysis, A: General, 384 (1–2) (2010), pp. 147–
153, 10.1016/j.apcata.2010.06.019.
[7] M.Á. Rivero-Crespo, M. Tejeda-Serrano, H. Pérez-Sánchez, J.P. Cerón-Carrasco,
[8] J. Oliver-Meseguer, A. Doménech-Carbó, M. Boronat, A. Leyva-Pérez, A. Corma,
[9] a) K. Higuchi, M. Onaka, Y. Izumi, J. Chem. Soc., Chem. Commun., 15 (1991), pp.
1035–1036, 10.1039/C39910001035. b) X. Huang, L. Chen, F. Ren, C. Yang, J. Li,
K. Shi, X. Gou, W. Wang Synlett, 28 (4) (2017), pp. 439–444, 10.1055/s-0036-
1588640.
[10] For recent reviews see: a) L. Liu, A. Corma, Chem. Rev. 118 (10) 2018, pp.
4981–5079, doi/10.1021/acs.chemrev.7b00776. b) J. M. Asensio, D. Bouzouita,
P. W. N. M. van Leeuwen, B. Chaudret Chem. Rev., 120 (2) (2020), pp. 1042–
1084, 10.1021/acs.chemrev.9b00368. c) M. Viciano–Chumillas, M. Mon, J.
Ferrando–Soria, A. Corma, A. Leyva–Perez, D. Armentano, E. Pardo Acc. Chem.
Res., 53 (2020), pp. 520–531, 10.1021/acs.accounts.9b00609.
[11] a) M. Tejeda–Serrano, M. Mon, B. Ross, F. Gonell, J. Ferrando–Soria, A. Corma, A.
Leyva–Pérez, D. Armentano, E. Pardo J. Am. Chem. Soc., 140 (2018), pp.
8827À8832, 10.1021/jacs.8b04669. b) M.A. Rivero–Crespo, J. Oliver–
Meseguer, K. Kaposka, P. Kutrowski, E. Pardo, J.P. Cerón–Carrasco, A. Leyva–
Perez, Chem. Sci., 11 (2020), pp. 8113–8124, 10.1039/D0SC02391D. c) T.
Ribeiro, A.S. Rodrigues, S. Calderon, A. Fidalgo, J.L.M. Gonçalves, V. André, M.T.
Duarte, P.J. Ferreira, J.P.S. Farinha, C. Baleizão J. Colloid Interface Sc., 561
(2020), pp. 609–619, 10.1016/j.jcis.2019.11.036.
[12] For recent reviews on catalytic ceria see: a) W. Yang, X. Wang, S. Song, H.
Zhang Chem, 5 (7) (2019), pp. 1743–1774, 10.1016/j.chempr.2019.04.009. b)
K. Chang, H. Zhang, M. Cheng, Q. Lu ACS Catal., 10 (1) (2020), pp. 613–63,
10.1021/acscatal.9b03935. c) R. Schmitt, A. Nenning, O. Kraynis, R. Korobko, A.
I. Frenkel, I. Lubomirsky, S.M. Haile, J.L.M. Rupp Chem. Soc. Rev., 49 (2) (2020),
pp. 554–592, 10.1039/c9cs00588a. For an article on commercially available
nanoceria characterization see d) M. Tinoco, S. Fernandez–Garcia, A. Villa, J.M.
Gonzalez, G. Blanco, A.B. Hungria, L. Jiang, L. Prati, J.J. Calvino, X. Chen Catal.
Sci. Technol., 9 (2019), pp. 2328–2334, 10.1039/C9CY00273A.
4. Conclusions
Nanoceria catalyzes the cyanosilylation of different ketones at
temperatures between 0 and 50 °C and in high yields, even under
solventless conditions. After simple calcination, the solid catalyst
can be reused ten times without depletion of the catalytic activity.
Other inorganic nano-oxides tested did not show this catalytic
behavior. Different types of crystalline nanoceria, including amor-
phous nanoceria, are catalytically active, and these results enable
the use of Au-supported nanoceria as a catalyst for aerobic oxida-
tion of alcohols/cyanosilylation reactions. These results open the
gate for the concomitant use of nanoceria-based materials as oxi-
dation and Lewis catalysts, to design cascade reactions of utility
in sustainable organic synthesis.
Declaration of Competing Interest
[13] F. Bozon-Verduraz, A. Bensalem, J. Chem. Soc., Faraday Trans. 90 (1994) 653–
[14] a) A. Leyva-Pérez, D. Cómbita-Merchán, J.R. Cabrero-Antonino, S.I. Al-Resayes,
The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
A. Corma, ACS Catal.,
3
(2013), pp. 250À258, 10.1021/cs300644s. b) A.
Trovarelli, J. Llorca, ACS Catalysis, 7 (7) (2017), pp. 4716–4735, 10.1021/
acscatal.7b01246.
27