in part by grants from the National Institutes of Health (GM63003
to WAV) and a grant from the Office of Naval Research (N00014-
02-1-0725 to HZ).
Notes and references
1 F. Allerberger and I. Klare, J. Antimicrob. Chemother., 1999, 43, 211.
2 S. S. Patel, J. A. Balfour and H. M. Bryson, Drugs, 1997, 53, 637.
3 S. Ribes, F. Taberner, A. Domenech, C. Cabellos, F. Tubau, J. Linares,
P. F. Viladrich and F. Gudiol, J. Antimicrob. Chemother., 2006, 57, 931.
4 T. Hidaka, M. Goda, T. Kuzuyama, N. Takei, M. Hidaka and H. Seto,
Mol. Gen. Genet., 1995, 249, 274.
5 H. Seto and T. Kuzuyama, Nat. Prod. Rep., 1999, 16, 589.
6 F. Hammerschmidt, G. Bovermann and K. Bayer, Liebigs Ann. Chem.,
1990, 1055.
7 F. Hammerschmidt, J. Chem. Soc., Perkin Trans. 1, 1991, 1993.
8 F. Hammerschmidt and H. Kahlig, J. Org. Chem., 1991, 56, 2364.
9 F. Hammerschmidt, H. Kahlig and N. Muller, J. Chem. Soc., Perkin
Trans. 1, 1991, 365.
10 F. Hammerschmidt, Liebigs Ann. Chem., 1992, 553.
11 F. Hammerschmidt, Angew. Chem., Int. Ed. Engl., 1994, 33, 341.
12 R. D. Woodyer, Z. Shao, P. Thomas, N. L. Kelleher, A. V. Blodgett,
W. W. Metcalf, W. A. van der Donk and H. Zhao, Chem. Biol., 2006,
DOI: 10.1016/j.chembiol.2006.09.007.
13 T. Hidaka, H. Iwakura, S. Imai and H. Seto, J. Antibiot., 1992, 45, 1008.
14 T. Kuzuyama, T. Hidaka, K. Kamigiri, S. Imai and H. Seto, J. Antibiot.,
1992, 45, 1812.
15 H. Seto, T. Hidaka, T. Kuzuyama, S. Shibahara, T. Usui, O. Sakanaka
and S. Imai, J. Antibiot., 1991, 44, 1286.
16 T. Kuzuyama, T. Seki, S. Kobayashi, T. Hidaka and H. Seto, Biosci.,
Biotechnol., Biochem., 1999, 63, 2222.
17 A. Woschek, F. Wuggenig, W. Peti and F. Hammerschmidt,
ChemBioChem, 2002, 3, 829.
18 P. Liu, K. Murakami, T. Seki, X. He, S. M. Yeung, T. Kuzuyama,
H. Seto and H. Liu, J. Am. Chem. Soc., 2001, 123, 4619.
19 P. Liu, A. Liu, F. Yan, M. D. Wolfe, J. D. Lipscomb and H. W. Liu,
Biochemistry, 2003, 42, 11577.
20 P. Liu, M. P. Mehn, F. Yan, Z. Zhao, L. Que, Jr. and H. W. Liu, J. Am.
Chem. Soc., 2004, 126, 10306.
21 Z. Zhao, P. Liu, K. Murakami, T. Kuzuyama, H. Seto and H. W. Liu,
Angew. Chem., Int. Ed., 2002, 41, 4529.
22 L. J. Higgins, F. Yan, P. Liu, H. W. Liu and C. L. Drennan, Nature,
2005, 437, 838.
23 K. McLuskey, S. Cameron, F. Hammerschmidt and W. N. Hunter,
Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 14221.
24 R. Banerjee, in The Chemistry and Biochemistry of B12, John Wiley &
Sons, New York, 1999.
Scheme 3 Proposed methyltransferase mechanism. One electron is
transferred from the reduced iron–sulfur cluster to SAM to form an
adenosyl radical and methionine. The adenosyl radical abstracts the pro-R
hydrogen atom from C2 of HEP, and the resulting substrate radical reacts
with MeCbl yielding HPP and cob(II)alamin. The enzyme is then returned
to the active state by reduction of the 4Fe4S cluster back to the +1 state
and binding of SAM and MeCbl. Alternatively, cob(II)alamin might be
reduced to cob(I)alamin and methylated while bound to the enzyme
similar to the reductive methylation of Met synthase.36 No information is
currently available regarding this question. Box: Organic radicals have
been shown to react with methylcobalamin to provide one-carbon
homologated products.37
precedented in adenosylcobalamin dependent enzymes.24 The
resulting organic free radical can then react with the methyl group
of MeCbl, yielding the desired HPP and cob(II)alamin. This
mechanism is consistent with all prior labeling studies, as well as
the bioinformatics and molecular genetic studies presented here.
Furthermore, this mechanism finds support in model studies by
Kra¨utler and Montforts and their coworkers who showed that
organic radicals react with MeCbl to form homologated products
(Inset Scheme 3).37,38 The mechanism in Scheme 3 can also be
applied to the related methyltransferases present in the phosphi-
nothricin tripeptide,39 fortimicin,40 and clorobiocin41 biosynthetic
pathways, whereas the methyl anion mechanism does not fit
without major modification in each case. The results presented
here thus suggest a new and radically different strategy for
methylation reactions in secondary metabolism. This strategy
requires stoichiometric use of both SAM and MeCbl to achieve
methylation of non-activated carbon centers.
25 S. Kobayashi, T. Kuzuyama and H. Seto, Antimicrob. Agents
Chemother., 2000, 44, 647.
26 T. Kuzuyama, S. Kobayashi, K. O’Hara, T. Hidaka and H. Seto,
J. Antibiot., 1996, 49, 502.
27 A. Marchler-Bauer and S. H. Bryant, Nucleic Acids Res., 2004, 32,
W327.
28 H. J. Sofia, G. Chen, B. G. Hetzler, J. F. Reyes-Spindola and
N. E. Miller, Nucleic Acids Res., 2001, 29, 1097.
29 M. F. Reid and C. A. Fewson, Crit. Rev. Microbiol., 1994, 20, 13.
30 C. Montella, L. Bellsolell, R. Perez-Luque, J. Badia, L. Baldoma,
M. Coll and J. Aguilar, J. Bacteriol., 2005, 187, 4957.
31 P. Greenzaid, Z. Luz and D. Samuel, J. Am. Chem. Soc., 1967, 89, 756.
32 G. Layer, D. W. Heinz, D. Jahn and W. D. Schubert, Curr. Opin. Chem.
Biol., 2004, 8, 468.
33 P. A. Frey, Annu. Rev. Biochem., 2001, 70, 121.
34 P. A. Frey and O. T. Magnusson, Chem. Rev., 2003, 103, 2129.
35 J. Stubbe and W. A. van der Donk, Chem. Rev., 1998, 98, 705.
36 R. G. Matthews, Acc. Chem. Res., 2001, 34, 681.
37 H. Mosimann and B. Kra¨utler, Angew. Chem., Int. Ed., 2000, 39, 393.
38 M. Glasenapp-Breiling and F. P. Montforts, Angew. Chem., Int. Ed.,
2000, 39, 721.
39 T. Hidaka, M. Hidaka, T. Kuzuyama and H. Seto, Gene, 1995, 158,
149.
40 T. Kuzuyama, T. Seki, T. Dairi, T. Hidaka and H. Seto, J. Antibiot.,
1995, 48, 1191.
41 L. Westrich, L. Heide and S. M. Li, ChemBioChem, 2003, 4, 768.
The authors thank Bill Metcalf for contribution of plasmids and
bacterial strains. We also thank Andrew Eliot for development of
the transposon disruption method and Josh Blodgett for help with
Streptomycete microbiology techniques. This work was supported
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 359–361 | 361