reactors19 have been used. These are mainly associated
with the pseudodilution effect of heterogeneous catalysis.
Recently, Hein et al.20 reported a Cu-catalyzed, regiocon-
trolled synthesis of 5-iodo-1,2,3-triazole systems and used
it as an intermediate in macrocyclization, while James
et al.21 synthesized the same intermediate using their flow
reactor techniques toaccess a libraryof 1,4,5-trisubstituted
macrocyclic triazoles via Pd-assisted coupling protocols.
Marcaurelle et al.22 reported the synthesis of 1,5-disubsti-
tuted triazoles by Ru catalysis. Several other methods for
macrocylization using dipolar cycloaddition reactions
were also reported.23 Our protocol for intramolecular
macrocylization is devoid of dilution techniques or hetero-
geneous catalysis. Moreover, we have synthesized both
1,4-di- and 1,4,5-trisubstituted triazoles within the same
molecular framework without any postmodification in the
preorganized structure.
Our synthetic strategy for structurally unique and di-
verse macrocyclic glycoconjugates is based upon three
different scaffolds: (i) a polyfunctional pyran skeleton
derived from readily available D-glucose and D-mannose,
(ii) a 1,4-disubstituted triazole, and (iii) a 1,4,5-trisubstituted
triazole. Stereochemical diversity in this collection is high
as every molecule has five stereogenic centers, unaffected
throughout the synthetic maneuver. Furthermore, the
structural diversity and complexity were installed by
altering the substituents in the phenyl ring and/or the
length of the tether between the two triazole moieties.
The sugar based pyran substrates were prepared from
readily available sugar, D-glucose (1) and D-mannose (2)
(Schemes 1, 3). The glycopyranosyl butenones (3aꢀc, 4a)
were obtained by reaction of preformed 1-C-propanonyl
β-D-glycopyranosides with different aromatic aldehydes in
good yields (65ꢀ74%).24 The latter (3aꢀc, 4a) on reaction
with tosyl chloride (TsCl) in presence of Et3N at 0 °C in
pyridine led to the formation of respective 60-O-(tosyl)-β-
D-C-glycopyranosyl aryl butenones chemoselectively,
which on further acetylation (Ac2O/pyridine) in the same
pot afforded the corresponding 60-O-(tosyl)-tri-O-acetyl-
β-D-C-glycopyranosyl aryl butenones (5aꢀc, 6a) in good
yields (78ꢀ83%). Tosylated derivatives (5aꢀc, 6a) were
reacted separately with sodium azide in DMF at 80 °C to
give the respective 60-azido-60-deoxy glycopyranosyl deriv-
atives (7aꢀc, 8a) in good yields (78ꢀ85%). At first, a Cu-
catalyzed alkyneꢀazide cycloaddition was used to selec-
tively combine the azide of the monosaccharide with
different alkynols, to generate the desired triazolyl bute-
nones (9a, 10a, and 11b) in very good yields (83ꢀ87%).
Figure 1. Pyran and triazole based biologically active macrocycles.
of nonpeptidic inhibitors are more significant than the
peptidyl inhbibitors in drug design and may be achieved
either by a natural substrate mimic or via iso-
steric replacement of the amide bond in the peptide back-
bone.9 The 1,2,3-triazole unit is a surrogate of the peptide
bond, and introduction of this motif offers improved stabi-
lity, lipophilicity, and absorption to the molecules.10
In view of the continuous efforts to develop new che-
motherapeutic agents from sugars,11 we were inspired by
the biologically active macrolides with pyran skeleton such
as rapamycin,12 bryostatin,13 kendomycin,14 spongistatine,15
and triazole containing clicktophycin-5216 (Figure 1) to
undertake the synthesis, conformational studies, and prelim-
inary biological activity of pyran based macrocycles as
possible anticancer agents.
In spite of their remarkable properties, synthesis of
macrocycles has serious limitations due to poor yields
during intramolecular cyclization.17 To alleviate these
problems, solid supported Cu catalysts18 and Cu tube flow
(9) (a) Williams, R. M.; Durham, C. A. Chem. Rev. 1988, 88, 511. (b)
Campbell, J.; Blackwell, H. E. J. Comb. Chem. 2009, 11, 1094. (c)
Nakayama, K.; Kawato, H. C.; Inagaki, H.; Ohta, T. Org. Lett. 2001,
3, 3447. (d) Wen, S.; Carey, K. L.; Nakao, Y.; Fusetani, N.; Packham,
G.; Ganesan, A. Org. Lett. 2007, 9, 1105. (9) Meanwell, N. A. J. Med.
Chem. 2011, 54, 2529.
(10) Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8,
1128.
(11) (a) Anand, N.; Pandey, S. K. Carbohydr. Res. 2011, 346, 16. (b)
Mishra, M.; Sharma, R.; Tripathi, R. P. Tetrahedron 2011, 67, 740.
(c) Bisht, S. S.; Fatima, S.; Tamrakar, A. K.; Rahuja, N.; Jaiswal, N.;
Srivastava, A. K.; Tripathi, R. P. Bioorg. Med. Chem. Lett. 2009, 19,
2699. (d) Pandey, J.; Sharma, A.; Tiwari, V. K.; Dube, D.; Ramachandran,
R.; Chaturvedi, V.; Sinha, S. K.; Mishra, N. N.; Shukla, P. K.; Tripathi,
R. P. J. Comb. Chem. 2009, 11, 422.
(12) Liang, J.; Hung, D. T.; Schreiber, S. L.; Clardy, J. J. Am. Chem.
Soc. 1996, 118, 1231.
(13) Pettit, G. R.; Kamano, Y.; Herald, C. L. J. Nat. Prod. 1986, 49,
661.
(14) Smith, A. B.; Mesaros, E. F.; Meyer, E. A. J. Am. Chem. Soc.
2005, 127, 6948.
(15) Smith, A. B; Risatti, C. A.; Atasoylu, O.; Bennett, C. S.; Liu, J.;
Cheng, H.; Dyke, K. T.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 14042.
(16) Nahrwold, M.; Bogner, T.; Eissler, S.; Verma, S.; Sewald, N.
Org. Lett. 2010, 12, 1064.
(17) Meutermans, W. D. F.; Gregory, T.; Bourne, G. T.; Golding,
S. T.; Horton, D. A.; Campitelli, M. R.; Craik, D.; Scanlon, M.; Smythe,
M. L. Org. Lett. 2003, 5, 2711.
(18) Haridas, V.; Lal, K.; Sharma, Y. K.; Upreti, S. Org. Lett. 2008,
10, 1645.
(19) (a) Bogdan, A. R.; James, K. Chem.;Eur. J. 2010, 16, 14506. (b)
Langer, R.; Tirrell, D. A. Nature 2004, 428, 487. (c) Mann, J. Nat. Prod.
Rep. 2001, 18, 417. (d) Beidler, D. R.; Ahuja, D.; Wicha, M. S.; Toogood,
P. L. Biochem. Pharmacol. 1999, 58, 1067.
(20) Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.;
Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 8018.
(21) Bogdan, A. R.; James, K. Org. Lett. 2011, 13, 4060.
(22) Kelly, A. R.; Wei, J.; Kesavan, S.; Marie, J. C.; Windmon, N.;
Young, D. W.; Marcaurelle, L. A. Org. Lett. 2009, 11, 2257.
(23) (a) Maarseveen, J. H. V; Horne, W. S; Ghadiri, M. R. Org. Lett.
2005, 7, 4503. (b) Turner, R. A; Oliver, A. G; Lokey, R. S. Org. Lett.
2007, 9, 5011.
(24) (a) Rodrigues, F.; Canac, Y.; Lubineau, A. Chem. Commun.
2000, 2049. (b) Riemann, I.; Papadopoulos, M. A.; Knorst, M.; Fessner,
W. D. Aust. J. Chem. 2002, 55, 147. (c) Bisht, S. S.; Pandey, J.; Sharma,
A.; Tripathi, R. P. Carbohydr. Res. 2008, 343, 1399. (d) Wang, J. f.; Lei,
M.; Li, Q.; Ge, Z.; Wang, X.; Li, R. Tetrahedron 2009, 65, 4826.
B
Org. Lett., Vol. XX, No. XX, XXXX