12 D. Schwartz-Lavi, I. Bar and S. Rosenwaks, Chem. Phys. Lett.,
1986, 128, 123.
5. Conclusions
13 C. S. Effenhauser, P. Felder and J. R. Huber, J. Phys. Chem.,
1990, 94, 296.
Applying the technique of velocity-map ion-imaging we have
determined the three-dimensional velocity distribution of NO
fragments from the photodissociation of jet-cooled nitroso-
benzene. Photolysis was performed at 290.5 nm and 226 nm,
corresponding to excitation of S2 and a higher singlet state,
respectively. The ion images presented here are completely iso-
tropic and can be modelled very well by a Maxwell–Boltzmann
distribution. The negative anisotropy of b ¼ ꢁ0.64 recently
reported from a study of 266 nm photodissociation might be
an artifact produced by the high laser intensity applied. A
strong light field could either align and trap the nitrosobenzene
molecule, or lead via two-photon excitation to a different very
fast dissociation channel.
14 E. Kades, M. Ro¨sslein, U. Bruhlmann and J. R. Huber, J. Phys.
¨
Chem., 1993, 97, 989.
15 A. Untch, R. Schinke, R. Cotting and J. R. Huber, J. Chem.
Phys., 1993, 99, 9553.
16 S. A. Reid, J. T. Brandon and H. Reisler, Chem. Phys. Lett., 1993,
209, 22.
17 M. Hippler, M. R. S. McCoustra and J. Pfab, Chem. Phys. Lett.,
1992, 198, 168.
18 M. R. S. McCoustra, M. Hippler and J. Pfab, Chem. Phys. Lett.,
1992, 200, 451.
19 F. Lahmani, C. Lardeux and D. Solgadi, Chem. Phys. Lett., 1986,
129, 24.
20 U. Bruhlmann and J. R. Huber, Chem. Phys. Lett., 1988, 143, 199.
¨
21 R. Schinke, A. Untch, H. U. Suter and J. R. Huber, J. Chem.
Phys., 1991, 94, 7929.
22 R. Schinke, S. Henning, A. Untch, M. Nonella and J. R. Huber,
J. Chem. Phys., 1989, 91, 2016.
23 R. D. Kenner, F. Rohrer and F. Stuhl, J. Phys. Chem., 1986, 90,
2635.
24 S. Niles and C. A. Wight, Chem. Phys. Lett., 1989, 154, 458.
25 A. Keßler, U. Kensy and B. Dick, Chem. Phys. Lett., 1998,
289, 516.
26 A. Keßler, A. Slenczka, R. Seiler and B. Dick, Phys. Chem. Chem.
Phys., 2001, 3, 2819.
6. Appendix: Invariance of the Gaussian with
respect to Abel transformation
Application of the Abel inversion to a Gaussian with mean 0,
standard deviation s, and area A,
ꢀ
ꢁ
ꢁ
A
x2
2s2
pffiffiffiffiffi
f ðxÞ ¼
exp ꢁ
;
ð12Þ
s
2p
27 Ya-Min Li, Ju-Long Sun, Ke-Li Han and Guo-Zhong He, Chem.
Phys. Lett., 2001, 338, 297.
yields the integral expression
Z
28 Jian-Hua Huang, Guang-Jun Wang, Xi-Bin Gu, Ke-Li Han and
Guo-Hong He, J. Phys. Chem., 2000, 104, 10 079.
29 R. Seiler and B. Dick, Chem. Phys., 2003, 288, 43.
30 J. M. Engert, A. Slenczka, U. Kensy and B. Dick, J. Phys. Chem.,
1996, 100, 11 883.
31 D. W. Chandler and P. L. Houston, J. Chem. Phys., 1987, 87,
1445.
32 A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum., 1997, 68,
3477.
33 T. Suzuki, V. P. Hradil, S. A. Hewitt, P. L. Houston and B. J.
Whitaker, Chem. Phys. Lett., 1991, 187, 257.
34 J. Park, I. V. Dyakov, A. M. Mebel and M. C. Lin, J. Phys. Chem.
A, 1997, 101, 6043.
ꢀ
1
A
x2
2s2
x
pffiffiffiffiffiffiffi
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 ꢁ r2
FðrÞ ¼
dx exp ꢁ
:
ð13Þ
s3 2p3
r
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
This can be solved with the substitution y ¼ x2 ꢁ r2, lead-
ing to
ꢀ
ꢁ
Z
1
A
r2 þ y2
pffiffiffiffiffiffiffi
FðrÞ ¼
dy exp ꢁ
ð14Þ
ð15Þ
2s2
s3 2p3
0
ꢀ
ꢁ
A
¼
r2
2s2
exp ꢁ
:
s2p
35 W. R. Gentry and C. F. Giese, Rev. Sci. Instrum., 1975, 46, 104.
36 E. Wrede, S. Laubach, S. Schulenberg, A. Brown, E. R. Wouters,
A. J. Orr-Ewing and M. N. R. Ashfold, J. Chem. Phys., 2001, 114,
2629.
37 D. A. Dahl, SIMION 3D 6.0, Ion Source Software, Idaho
Falls, ID.
Hence the Abel inverse F(r) of f(x) is a Gaussian with mean
0 and the original standard deviation, but with the scaled area
rffiffiffi
A
2
~
A ¼
:
ð16Þ
s
p
38 R. N. Bracewell, The Fourier Transform and its Applications,
McGraw-Hill, New York, 1986.
Acknowledgements
39 G. Pretzler, H. Jaeger, T. Neger, H. Philipp and J.
Woisetschlaeger, Z. Naturforsch., A, 1992, 47, 955.
40 R. N. Zare and D. R. Herschbach, Proc. IEEE, 1963, 51, 173.
41 R. Bersohn and S. H. Lin, Adv. Chem. Phys., 1969, 16, 67.
42 G. E. Busch and K. R. Wilson, J. Chem. Phys., 1972, 56, 3638.
43 G. E. Busch and K. R. Wilson, J. Chem. Phys., 1972, 56, 3626.
44 M. Mons and I. Dimicoli, Chem. Phys. Lett., 1986, 131, 298.
45 M. Mons and I. Dimicoli, Chem. Phys., 1989, 130, 307.
46 D. C. Robie, M. Hunter, J. L. Bates and H. Reisler, Chem. Phys.
Lett., 1992, 193, 413.
47 V. K. Nestorov and J. I. Cline, J. Chem. Phys., 1999, 111, 5287.
48 M. J. Bass, M. Brouard, A. P. Clark and C. Vallance, J. Chem.
Phys., 2002, 117, 8732.
49 V. P. Hradil, T. Suzuki, S. A. Hewitt, P. L. Houston and B. J.
Whitaker, J. Chem. Phys., 1993, 99, 4455.
50 R. Jost, J. Nygard, A. Pasinski and A. Delon, J. Chem. Phys.,
1996, 105, 1287.
51 C. Drucker and Th. Flade, Z. Wiss. Photogr. Photophys. Photo-
chem., 1930, 29, 29.
52 K. Tabei and S. Nagakura, Bull. Chem. Soc. Jpn., 1965, 38, 965.
53 G. D. Gillispie, A. U. Khan, A. C. Wahl, R. P. Hosteny and M.
Krauss, J. Chem. Phys., 1975, 63, 3425.
54 E. Kades, M. Ro¨sslein and J. R. Huber, J. Phys. Chem., 1994, 98,
13 556.
TJO gratefully acknowledges a fellowship from the Fonds der
Chemischen Industrie.
References
1
2
3
4
5
6
M. P. Roellig, P. L. Houston, M. Asscher and Y. Haas, J. Chem.
Phys., 1980, 73, 5081.
R. D. Bower, R. W. Jones and P. L. Houston, J. Chem. Phys.,
1983, 79, 2799.
F. Lahmani, C. Lardeux and D. Solgadi, Chem. Phys. Letters,
1983, 102, 523.
O. Benoist D’Azy, F. Lahmani, C. Lardeux and D. Solgadi,
Chem. Phys., 1985, 94, 247.
B. A. Keller, P. Felder and J. R. Huber, J. Phys. Chem., 1987, 91,
1114.
P. Farmanara, V. Stert and W. Radloff, Chem. Phys. Lett., 1999,
303, 521.
7
8
J. M. Engert and B. Dick, Chem. Phys. Lett., 1999, 299, 423.
K. J. Castle, J. Abbott, Xianzhao Peng and Wei Kong, Chem.
Phys. Lett., 2000, 318, 565.
9
D. Schwartz-Lavi and S. Rosenwaks, J. Chem. Phys., 1988, 88,
6922.
55 G. R. Kumar, P. Gross, C. P. Safvan, F. A. Rajgara and D.
Mathur, J. Phys. B: At. Mol. Opt. Phys., 1996, 29, L95.
56 G. R. Kumar, P. Gross, C. P. Safvan, F. A. Rajgara and D.
Mathur, Phys. Rev. A, 1996, 53, 3098.
10 J. August, M. Brouard, M. P. Dokker, C. J. Milne, J. P. Simons,
R. Lavi, S. Rosenwaks and D. Schwartz-Lavi, J. Phys. Chem.,
1988, 92, 5485.
11 H. Finke, H. Spieker and P. Andresen, J. Chem. Phys., 1999, 110,
4777.
57 J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt and T. Seideman,
Phys. Rev. Lett., 2000, 85, 2470.
2806
Phys. Chem. Chem. Phys., 2003, 5, 2799–2806