Page 7 of 9
ACS Catalysis
Allowing Aldol Condensation to Indenes. Chem. Commun. 2013, 49,
6489.
Activation of Unstrained Ketones. Angew. Chem., Int. Ed. 2018, 57,
475. e) Wentzel, M. T.; Reddy, V. J.; Hyster, T. K.; Douglas, C. J.
Chemoselectivity in Catalytic C-C and C-H Bond Activation:
Controlling Intermolecular Carboacylation and Hydroarylation of
Alkenes. Angew. Chem. Int. Ed. 2009, 48, 6121. f) Wang, J.; Chen,
W.; Zuo, S.; Liu, L.; Zhang, X.; Wang, J. Direct Exchange of a
Ketone Methyl or Aryl Group to Another Aryl Group through C-C
Bond Activation Assisted by Rhodium Chelation. Angew. Chem. Int.
Ed. 2012, 51, 12334. g) Ko, H. M.; Dong, G. Cooperative Activation
of Cyclobutanones and Olefins Leads to Bridged Ring Systems by a
Catalytic [4 + 2] Coupling. Nat. Chem. 2014, 6, 739. h) Zhao, T.-T.;
Xu, W.-H.; Zheng, Z.-J.; Xu, P.-F.; Wei, H. Directed Decarbonylation
of Unstrained Aryl Ketones via Nickel-Catalyzed C-C Bond Cleavage.
J. Am. Chem. Soc. 2018, 140, 586. i) Xia, Y.; Lu, G.; Liu, P.; Dong,
G. Catalytic Activation of Carbon–Carbon Bonds in Cyclopentanones.
Nature 2016, 539, 546. j) Xu, Y.; Qi, X.; Zheng, P.; Berti, C. C.; Liu,
P.; Dong, G. Deacylative Transformations of Ketones via
Aromatization-Promoted C–C Bond Activation. Nature 2019, 567,
373.
(13) a) Schinkel, M.; Marek, I.; Ackermann, L. Carboxylate-
Assisted Ruthenium(II)-Catalyzed Hydroarylations of Unactivated
Alkenes through C–H Cleavage. Angew. Chem. Int. Ed. 2013, 52,
3977. b) Robbins, D. W.; Hartwig, J. F. A C-H Borylation Approach
to Suzuki-Miyaura Coupling of Typically Unstable 2-Heteroaryl and
Polyfluorophenyl Boronates. Org. Lett. 2012, 14, 4266. c) Clot, E.;
Mégret, C.; Eisenstein, O.; Perutz, R. B. Exceptional Sensitivity of
Metal−Aryl Bond Energies to ortho-Fluorine Substituents: Influence
of the Metal, the Coordination Sphere, and the Spectator Ligands on
M−C/H−C Bond Energy Correlations. J. Am. Chem. Soc. 2009, 131,
7817.
(14) a) Liu, Y.-J.; Xu, H.; Kong, W.-J.; Shang, M.; Dai, H.-X.; Yu,
J.-Q. Overcoming the Limitations of Directed C–H Functionalizations
of Heterocycles. Nature 2014, 515, 389. b) Shang, M.; Wang, M.-M.;
Saint-Denis, T. G.; Li, M.-H.; Dai, H.-X.; Yu, J.-Q. Copper-Mediated
Late-Stage Functionalization of Heterocycle-Containing Molecules.
Angew. Chem., Int. Ed. 2017, 56, 5317. c) Xu, L.-L.; Wang, X.; Ma,
B.; Yin, M.-X.; Lin, H.-X.; Dai, H.-X.; Yu, J.-Q. Copper Mediated C–
H Amination with Oximes: En Route to Primary Anilines. Chem. Sci.
2018, 9, 5160. d) Wang, H.; Lorion, M. M.; Ackermann, L.
Overcoming the Limitations of C−H Activation with Strongly
Coordinating N-Heterocycles by Cobalt Catalysis. Angew. Chem., Int.
Ed. 2016, 55, 10386.
(15) a) Segawa, Y.; Maekawa, T.; Itami, K. Synthesis of Extended π-
Systems through C-H Activation. Angew. Chem., Int. Ed. 2015, 54, 66.
b) Ito, H.; Segawa, Y.; Murakami, K.; Itami, K. Polycyclic Arene
Synthesis by Annulative π-Extension. J. Am. Chem. Soc. 2019, 141, 3.
c) Kitano, H.; Matsuoka, W.; Ito, H.; Itami, K. Annulative π-
extension of Indoles and Pyrroles with Diiodobiaryls by Pd Catalysis:
Rapid Synthesis of Nitrogen-Containing Polycyclic Aromatic
Compounds. Chem. Sci. 2018, 9, 7556. d) Suzuki, S.; Segawa, Y.;
Itami, K.; Yamaguchi, J. Synthesis and Characterization of
Hexaarylbenzenes with Five or Six Different Substituents Enabled by
Programmed Synthesis. Nat. Chem. 2015, 7, 227. e) Tani, S.; Uehara,
T. N.; Yamaguchi, J.; Itami, K. Programmed Synthesis of
Arylthiazoles through Sequential C–H Couplings. Chem. Sci. 2014, 5,
123. f) Ozaki, K.; Zhang, H.; Ito, H.; Lei, A.; Itami, K. One-Shot
Indole-to-Carbazole π-Extension by a Pd–Cu–Ag Trimetallic System.
Chem. Sci. 2013, 4, 3416. g) Koga, Y.; Kaneda, T.; Saito, Y.;
Murakami, K.; Itami, K. Synthesis of Partially and Fully Fused
Polyaromatics by Annulative Chlorophenylene Dimerization. Science
2018, 359, 435.
1
2
3
4
5
6
7
8
(10) a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rhodium-
Catalyzed C−C Bond Formation via Heteroatom-Directed C−H Bond
Activation. Chem. Rev. 2010, 110, 624. b) Satoh, T.; Miura, M.
Oxidative Coupling of Aromatic Substrates with Alkynes and
Alkenes under Rhodium Catalysis. Chem. Eur. J. 2010, 16, 11212. c)
Song, G.; Wang, F.; Li, X. C–C, C–O and C–N bond Formation via
Rhodium(III)-catalyzed oxidative C–H activation. Chem. Soc. Rev.
2012, 41, 3651. d) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman,
J. A. Rhodium Catalyzed Chelation-Assisted C–H Bond
Functionalization Reactions. Acc. Chem. Res. 2012, 45, 814. e)
Patureau, F. W.; Wencel-Delord, J.; Glorius, F. Cp*Rh-Catalyzed C–
H Activations: Versatile Dehydrogenative Cross-Couplings of Csp2
C–H Positions with Olefins, Alkynes, and Arenes. Aldrichimica Acta
2012, 45, 31. f) Kuhl, N.; Schröder, N.; Glorius, F. Formal SN-Type
Reactions in Rhodium(III)-Catalyzed C-H Bond Activation. Adv.
Synth. Catal. 2014, 356, 1443. g) Song, G.; Li, X. Substrate
Activation Strategies in Rhodium(III)-Catalyzed Selective
Functionalization of Arenes. Acc. Chem. Res. 2015, 48, 1007. h) Ye,
B.; Cramer, N. Chiral Cyclopentadienyls: Enabling Ligands for
Asymmetric Rh(III)-Catalyzed C–H Functionalizations. Acc. Chem.
Res. 2015, 48, 1308. i) Piou, T.; Rovis, T. Electronic and Steric
Tuning of a Prototypical Piano Stool Complex: Rh(III) Catalysis for
C–H Functionalization. Acc. Chem. Res. 2018, 51, 170. For selected
reviews on traceless directing groups in C-H functionalization: j) Sun,
H.; Guimond, N.; Huang, Y. Advances in the Development of
Catalytic Tethering Directing Groups for C–H Functionalization
Reactions. Org. Biomol. Chem. 2016, 14, 8389. k) Zhang, F.; Spring,
D. R. Arene C–H Functionalisation Using a Removable/Modifiable
or a Traceless Directing Group Strategy. Chem. Soc. Rev. 2014, 43,
6906. l) Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G.; Bellina, F.
Achievement of Regioselectivity in Transition Metal-Catalyzed
Direct C–H (Hetero)arylation Reactions of Heteroarenes with One
Heteroatom through the Use of Removable Protecting/Blocking
Substituents or Traceless Directing Groups. Tetrahedron, 2016, 72,
1795. m) Ritleng, V.; Sirlin, C.; Pfeffer, M. Ru-, Rh-, and Pd-
Catalyzed C−C Bond Formation Involving C−H Activation and
Addition on Unsaturated Substrates:ꢀ Reactions and Mechanistic
Aspects. Chem. Rev. 2002, 102, 1731. n) Lewis, J. C.; Bergman, R. G.;
Ellman, J. A. Direct Functionalization of Nitrogen Heterocycles via
Rh-Catalyzed C−H Bond Activation. Acc. Chem. Res. 2008, 41, 1013.
o) Gensch, T.; James, M. J.; Dalton, T.; Glorius, F. Increasing
Catalyst Efficiency in C−H Activation Catalysis. Angew. Chem. Int.
Ed. 2018, 57, 2296.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11) a) Li, H.; Li, Y.; Zhang, X.-S.; Chen, K.; Wang, X.; Shi. Z.-J.
Pyridinyl Directed Alkenylation with Olefins via Rh(III)-Catalyzed
C–C Bond Cleavage of Secondary Arylmethanols. J. Am. Chem. Soc.
2011, 133, 15244. b) Lei, Z.-Q.; Pan, F.; Li, H.; Li, Y.; Zhang, X.-S.;
Chen, K.; Wang, X.; Li, Y.-X.; Sun, J.; Shi, Z.-J. Group Exchange
between Ketones and Carboxylic Acids through Directing Group
Assisted Rh-Catalyzed Reorganization of Carbon Skeletons. J. Am.
Chem. Soc. 2015, 137, 5012. c) Lei, Z.-Q.; Li, H.; Li, Y.; Zhang, X.-
S.; Chen, K.; Wang, X.; Sun, J. Shi, Z.-J. Extrusion of CO from Aryl
Ketones: Rhodium(I)-Catalyzed C-C Bond Cleavage Directed by a
Pyridine Group. Angew. Chem. Int. Ed. 2012, 51, 2690. d) Pan, F.;
Lei, Z.-Q.; Wang, H.; Li, H.; Sun, J.; Shi, Z.-J. Rhodium(I)-Catalyzed
Redox-Economic Cross-Coupling of Carboxylic Acids with Arenes
Directed by N-Containing Groups. Angew. Chem., Int. Ed. 2013, 52,
2063. e) Song, F.; Gou, T.; Wang, B.-Q.; Shi, Z.-J. Catalytic
Activations of Unstrained C–C Bond Involving Organometallic
Intermediates. Chem. Soc. Rev. 2018, 47, 7078.
(16) a) Qin, X.; Li, X.; Huang, Q.; Liu, H.; Wu, D.; Guo, Q.; Lan,
J.; Wang, R.; You, J. Rhodium(III)-Catalyzed ortho C-H
Heteroarylation of (Hetero)aromatic Carboxylic Acids: A Rapid and
Concise Access to π-Conjugated Poly-heterocycles. Angew. Chem.,
Int. Ed. 2015, 54, 7167. b) Li, B.; Lan, J.; Wu, D.; You, J.
Rhodium(III)-Catalyzed ortho-Heteroarylation of Phenols through
Internal Oxidative C-H Activation: Rapid Screening of Single-
Molecular White-Light-Emitting Materials. Angew. Chem., Int. Ed.
2015, 54, 14008. c) Yin, J.; Tan, M.; Wu, D.; Jiang, R.; Li, C.; You, J.
Synthesis of Phenalenyl-Fused Pyrylium Cations: Divergent C−H
(12) a) Jun, C.-H.; Huh, C.-W.; Na, S.-J. Direct Synthesis of
Ketones from Primary Alcohols and 1-Alkenes. Angew. Chem. Int.
Ed. 1998, 37, 145. b) Zeng, R.; Dong, G. Rh-Catalyzed
Decarbonylative Coupling with Alkynes via C–C Activation of Isatins.
J. Am. Chem. Soc. 2015, 137, 1408. c) Xia, Y.; Wang, J.; Dong, G.
Distal-Bond-Selective
C−C
Activation
of
Ring-Fused
Cyclopentanones: An Efficient Access to Spiroindanones. Angew.
Chem. Int. Ed. 2017, 56, 2376. d) Rong, Z.-Q.; Lim, H. N.; Dong, G.
Intramolecular Acetyl Transfer to Olefins by Catalytic C-C Bond
ACS Paragon Plus Environment