3
448 J ournal of Medicinal Chemistry, 1998, Vol. 41, No. 18
Furet et al.
graphics by A. Dietrich, unpublished results). The C-terminal
groups were designed interactively using a Lee and Richards
solvent-accessible surface representation of the binding site
(16) Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. New
Coupling Reagents in Peptide Synthesis. Tetrahedron Lett. 1989,
3
0, 1927-1930.
R
(
17) (a) Fretz, H. N -Fmoc-O,O-(Dimethylphospho)-L-tyrosine Fluo-
ride: A Convenient Building Block for The Solid-Phase Synthesis
of Phosphotyrosyl Peptides. Lett. Pept. Sci. 1997, 4, 171-176.
(b) Fretz, H. A. Practical Dealkylation Procedure for O,O-
Dimethyl-phosphotyrosyl-containing Peptide-Resins. Lett. Pept.
(
Bohacek and McMartin29) to guide the positioning of the
groups such that they made good van der Waals contacts with
the residues of the hydrophobic region of the Grb2-SH2
domain. Care was taken that the C-terminal groups were
generated as conformational minima. Ligand-SH2 domain
complexes corresponding to designed C-terminal groups mak-
ing good van der Waals contacts with the protein (as judged
from the close proximity of the group atoms in a skeletal
representation to the solvent-accessible surface of the binding
site) and presenting no apparent conformational strain were
subjected to energy minimization to refine the models. The
Sci. 1996, 3, 343-348. (c) Garcia-Echeverria, C. Evaluation of
R
coupling conditions for the incorporation of N -Fmoc-Tyr(PO
3
H
2
)-
OH in solid-phase peptide synthesis. Lett. Pept. Sci. 1996, 2,
3
69-373. (d) Garcia-Echeverria, C. Potential pyrophosphate
formation upon use of NR-Fmoc-Tyr(PO3H2)-OH in solid-phase
peptide synthesis. Lett. Pept. Sci. 1995, 2, 93-98.
(18) Wade, J . D.; Bedford, J .; Sheppard, R. C.; Tregear, G. W. DBU
as an NR-deprotecting reagent for the fluorenylmethoxycarbonyl
group in continuous flow solid-phase peptide synthesis. Pept. Res.
3
0
minimizations were performed using the AMBER force field
1
991, 4, 194-199.
in conjunction with the GB/SA water solvation model.31 The
ligand as well as the protein residues within a distance of 5 Å
were allowed to move freely upon energy minimization, while
those at a distance between 5 and 8 Å were constrained by
application of a parabolic force constant of 50 kJ /Å. Residues
beyond 8 Å were ignored.
(
19) (a) Albericio, F.; Barany, G.; Fields, G. B.; Hudson, D.; Kates,
S. A.; Lyttle, M. H.; Sole, N. A. Allyl-based orthogonal solid-
phase peptide synthesis. Pept. 1992, Proc. Eur. Pept. Symp.,
2
2nd; Schneider, C. H., Eberle, A. N., Eds.; ESCOM: Leiden,
The Netherlands, 1993; pp 191-193. (b) Kates, S. A.; Daniels,
S. B.; Sole, N. A.; Barany, G.; Albericio, F. Automated allyl
chemistry for solid-phase peptide synthesis: Applications to
cyclic and branched peptides. Pept.: Chem., Struct. Biol., Proc.
Am. Pept. Symp., 13th; Hodges, R. S., Smith, J . A., Eds.;
ESCOM: Leiden, The Netherlands, 1994; pp 113-15.
Ack n ow led gm en t. The authors are grateful to C.
Stamm and M. G. D’Addio for their technical assistance,
to Dr. J . Schneider for performing the NMR experi-
ments, to Dr. C. Guenat for mass spectra, to G. Farrugio
for amino acid analysis, and to R. Bohacek for providing
the Lee and Richards solvent-accessible surface com-
puter program.
(
20) (a) Delforge, D.; Dieu, M.; Delaive, E.; Art, M.; Gillon, B.;
Devreese, B.; Raes, M.; Van Beeumen, J .; Remacle, J . Solid-
phase Synthesis of Tailed Cyclic Peptides: The Use of R-Allyl-
protected Aspartic Acid Leads To Aspartimide and Tetramethyl-
guanidinium Formation. Lett. Pept. Sci. 1996, 3, 89-07. (b)
Karlstr o¨ m, A.; Und e´ n, A. A New Protecting Group For Aspartic
Acid That Minimizes Piperidine-Catalyzed Aspartimide Forma-
tion in Fmoc Solid Phase Peptide Synthesis. Tetrahedron Lett.
1996, 37, 4243-4246. (c) Packman, L. C. N-2-Hydroxy-4-
Methoxybenzyl (Hmb) Backbone Protection Strategy Prevents
Double Aspartimide Formation in a ‘Difficult’ Peptide Seqence.
Tetrahedron Lett. 1995, 36, 7523-7526. (d) Yang, Y.; Seeney,
W. V.; Schneider, K.; Th o¨ rnqvist, S.; Chait, B. T.; Tam, J . P.
Aspartimide Formation in Base-driven 9-Fluorenylmethoxycar-
bonyl Chemistry. Tetrahedron Lett. 1994, 35, 9689-9692.
21) (a) Spatola, A. F.; Darlak, K.; Romanovskis, P. An Approach to
Cyclic Peptide Libraries: Reducing Epimerisation in Medium
Sized Rings During Solid Phase Synthesis. Tetrahedron Lett.
Refer en ces
(
1) Alessandro, R.; Spoonster, J .; Wersto, R. P.; Kohn, E. C. Signal
Transduction As a Therapeutic Target. Curr. Top. Microbiol.
Immunol. 1996, 213, 167-188.
(
2) Saltiel, A. R.; Sawyer, T. K. Targeting Signal Transduction in
the Discovery of Antiproliferative Drugs. Chem. Biol. 1996, 3,
8
87-893.
(
(
(
(
(
3) Gibbs, J . B.; Oliff, A. Pharmaceutical Research in Molecular
Oncology. Cell 1994, 79, 193-198.
4) Levitzki, A. Signal Transduction Therapy. A Novel Approach to
Disease Management. Eur. J . Biochem. 1994, 226, 1-13.
5) Traxler, P. Protein Tyrosine Kinase Inhibitors in Cancer Treat-
ment. Exp. Opin. Ther. Pat. 1997, 7, 571-588.
1
996, 37, 591-594. (b) Griehl, C.; Kolbe, A.; Merkel, S. Quan-
titative description of epimerization pathways using the carbo-
diimide method in the synthesis of peptides. J . Chem. Soc.,
Perkin Trans. 2 1996, 2525-2529. (c) Valero, M.-L.; Giralt, E.;
Andreu, D. Solid phase-mediated cyclization of head-to-tail
peptides: problems associated with side chain anchoring. Tet-
rahedron Lett. 1996, 37, 4229-4232. (d) Quibell, M.; Packman,
L. C.; J ohnson, T. Identification of coupling conditions proceeding
with low C-terminal epimerization during the assembly of fully
protected backbone-substituted peptide segments. J . Chem. Soc.,
Perkin Trans. 1 1996, 1219-1225. (e) Somlai, C.; Szokan, G.;
Penke, B. Epimerization-free amidation of protected peptide
acids. Synthesis 1995, 638-646. (f) Benoiton, N. L.; Lee, Y. C.;
Chen, F. M. F. A new coupling method allowing epimerization-
free aminolysis of segments: Use of succinimidyl esters obtained
through mixed anhydrides. Pept. 1994, Proc. Eur. Pept. Symp.,
6) Gishizky, M. L. Tyrosine Kinase Induced Mitogenesis Breaking
the Link with Cancer. In Annual Reports in Medicinal Chem-
istry; Bristol, J . A., Ed; Academic Press: San Diego, 1995; Vol.
3
0, pp 247-253.
(
7) Smithgall, T. E. SH2 and SH3 Domains: Potential Targets for
Anti-Cancer Drug Design. J . Pharmacol. Toxicol. Methods 1995,
3
4, 125-132.
(
8) Beattie, J . SH2 Domain Protein Interaction and Possibilities for
Pharmacological Intervention. Cell. Signalling 1996, 2, 75-86.
9) Peptide studies have established that the minimal sequence
retaining micromolar affinity for the Grb2-SH2 domain is the
tripeptide pTyr-Ile-Asn. Asparagine at position pTyr+2 is
absolutely required, while the pTyr+1 position is more versatile,
valine, glutamine, and glutamic acid being good substitutes for
isoleucine (Garcia-Echeverria, C.; et al. Novartis Pharma Inc.,
Oncology Research Department, unpublished results).
10) Furet, P.; Gay, B.; Garcia-Echeverria, C.; Rahuel, J .; Fretz, H.;
Schoepfer, J .; Caravatti, G. Discovery of 3-Aminobenzyloxycar-
bonyl as an N-Terminal Group Conferring High Affinity to the
Minimal Phosphopeptide Sequence Recognized by the Grb2-SH2
Domain. J . Med. Chem. 1997, 40, 3551-3556.
(
2
1
3rd; Maia, H. L. S., Ed.; ESCOM: Leiden, The Netherlands,
995; pp 203-204.
(
22) Garcia-Echeverria, C.; Furet, P.; Gay, B.; Fretz, H.; Rahuel, J .;
Schoepfer, J .; Caravatti, G. Potent Antagonists of the SH2
Domain of Gbr2: Optimization of the X+1 position of 3-amino-
(
(
(
Z-Tyr(PO
744.
3 2 2
H )-X+1-Asn-NH . J . Med. Chem. 1998, 41, 1741-
1
(23) Songyang, Z.; Shoelson, S. E.; McGlade, J .; Olivier, P.; Pawson,
T.; Bustelo, X. R.; Barbacid, M.; Sabe, H.; Hanafusa, H.; Yi. T.;
Ren, R.; Baltimore, D.; Ratnofsky, S.; Feldman, R. A.; Cantley,
L. C. Specific Motifs Recognized by the SH2 Domains of Csk,
3BP2, fps/fes, GRB-2, HCP, SHC, Syk and Vav. Mol. Cell. Biol.
1994, 14, 2777-2785.
(24) Songyang, Z.; Shoelson, S. E.; Chaudhuri, M.; Gish, G.; Pawson,
T.; Hase, W. G.; King, F.; Roberts, T.; Ratnofsky, S.; Lechleider,
R. J .; Neel, B. G.; Birge, R. B.; Fajardo, J . E.; Chou, M. M.;
Hanafusa, H.; Schaffhausen, B.; Cantley, L. C. SH2 Domains
Recognize Specific Phosphopeptide Sequences. Cell 1993, 72,
767-778.
(25) Gay, B.; Furet, P.; Garcia-Echeverria, C.; Rahuel, J .; Ch eˆ ne, P.;
Fretz, H.; Schoepfer, J .; Caravatti, J . Dual Specificity of Src
Homology 2 Domains for Phosphotyrosine Peptide Ligands.
Biochemistry 1997, 36, 5712-5718.
(26) Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Color
test for detection of free terminal amino groups in the solid-phase
synthesis of peptides. Anal. Biochem. 1970, 34, 595-598.
11) Rahuel, J .; Gay, B.; Erdmann, D., Strauss, A.; Garcia-Echeverria,
C.; Furet, P.; Caravatti, G.; Fretz, H.; Schoepfer, J .; Gruetter,
M. Structural Basis for Specificity of Grb2-SH2 Revealed by a
Novel Ligand Binding Mode. Nat. Struct. Biol. 1996, 3, 586-
5
89.
12) For the nomenclature of the SH2 domain residues see: Lee, C.
H.; Kominos, D.; J acques, S.; Margolis, B.; Schlessinger, J .;
Shoelson, S. E.; Kuriyan, J . Crystal Structures of Peptide
Complexes of the Amino-Terminal SH2 Domain of the Syp
Tyrosine Phosphatase. Structure 1994, 2, 423-438.
(
13) Ligand residues are numbered relative to the position of the
phosphotyrosine which is denoted pTyr0.
(14) Rink, H. Solid-phase synthesis of protected peptide fragments
using a trialkoxy-diphenyl-methyl ester resin. Tetrahedron Lett.
1
987, 28, 3787-3790.
15) Atherton, E.; Sheppard, R. C. In Solid-Phase Peptide Synthesis
A Practical Approach, Rickwood, D., Hames, B. D., Eds.; IRL
Press at Oxford University Press: Oxford, 1989.
(
-