Paper
Dalton Transactions
details are given for complex 1. 500 mg of complex 1 was dis-
solved in dry and degassed THF (or methanol, 10 ml). To this,
excess NO gas was purged at room temperature. The brown
2
4 S. Kondo, S. Toyokuni, T. Tsuruyama, M. Ozeki,
T. Tachibana, M. Echizenya, H. Hiai, H. Onodera and
M. Imamura, Cancer Lett., 2002, 179, 87.
colored solution became greenish. The reaction mixture was
allowed to stand at room temperature for 1 h. Then after
5 R. V. Mendes, A. R. Martins, G. de Nucci, F. Murad and
F. A. Soares, Histopathology, 2001, 39, 172.
removing excess NO
2
, the reaction mixture was subjected to
6 N. Fukuyama, Y. Takebayashi, M. Hida, H. Ishida,
K. Ichimori and H. Nakazawa, Free Radicals Biol. Med.,
1997, 22, 771.
7 J. S. Liu, M. L. Zhao, C. F. Brosnan and S. C. Lee,
Am. J. Pathol., 2001, 158, 2057.
column chromatography using neutral alumina. Yield, ∼50%.
The formation of tert-butyl nitrite was confirmed by ESI-
mass spectroscopy as well as by comparing the other spectral
data with the commercially available ones. CCDC no. 1058732.
Elemental analyses: calcd (%): C, 46.59; H, 8.80; N, 13.58;
8 H. Gunaydin and K. N. Houk, Chem. Res. Toxicol., 2009, 22,
894.
+
found (%): C, 46.56; H, 8.81; N, 13.66. Mass (M + H )/z: calcd:
1
04.06; found: 103.95.
Complex 5. To a degassed solution of complex 1 in metha-
9 A. van der Vliet, J. P. Eiserich, B. Halliwell and C. E. Cross,
J. Biol. Chem., 1997, 272, 7617.
2
nol (20 ml), excess NO gas was purged at room temperature. 10 R. Radi, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 4003.
The brown colored solution became greenish. The volume of 11 R. Radi, Acc. Chem. Res., 2013, 46, 550.
the solution was reduced to ∼5 ml and kept at room tempera- 12 N. B. Surmeli, N. K. Litterman, A. F. Miller and J. T. Groves,
ture for 5–6 days to afford crystals of complex 5. Yield: (∼10%).
J. Am. Chem. Soc., 2010, 132, 17174.
1
1
3 J. Olbregts, Int. J. Chem. Kinet., 1985, 17, 835.
4 J. Su and J. T. Groves, J. Am. Chem. Soc., 2009, 131,
12979.
Conclusion
1
5 K. Bian, Z. H. Gao, N. Weisbrodt and F. Murad, Proc. Natl.
Acad. Sci. U. S. A., 2003, 100, 5712.
6 J. Su and J. T. Groves, Inorg. Chem., 2010, 49, 6317;
M. P. Schopfer, B. Mondal, D.-H. Lee, A. A. Narducci
Sarjeant and K. D. Karlin, J. Am. Chem. Soc., 2009, 131,
In conclusion, the present manuscript demonstrates the NO
reactivity of two Cu(II) complexes of N O type ligands. The
2
2
2
1
reaction leads to the nitration at the 4-position of a co-
ordinated equatorial phenolate ring of the ligand frameworks.
This nitration did not occur at the phenol ring which is axially
coordinated to the metal center. Spectroscopic evidence
suggests that the reaction proceeds through a phenoxyl radical
complex formation in the presence of NO . In contrast, NO
11304; G. Y. Park, S. Deepalatha, S. C. Puiu, D.-H. Lee,
B. Mondal, A. A. Narducci Sarjeant, D. del Rio,
M. Y. M. Pau, E. I. Solomon and K. D. Karlin, J. Biol. Inorg.
Chem., 2009, 14, 1301; D. Maiti, D.-H. Lee, A. A. Narducci
Sarjeant, M. Y. M. Pau, E. I. Solomon, K. Gaoutchenova,
J. Sundermeyer and K. D. Karlin, J. Am. Chem. Soc., 2008,
2
2
reactivity of Cu(II) complexes of [2,4-di-tert-butyl-6-(((2-di-
methylamino)ethyl) (isopropyl)amino)methyl)phenol and 6,6′-
(((2-(dimethylamino)ethyl)azanediyl)bis(methylene))bis(2,4-di-
130, 6700; A. Yokoyama, K.-B. Cho, K. D. Karlin and
tert-butylphenol)] was reported to induce the reduction of
Cu(II) centers leading to the nitration of the phenol ring of the
ligand through NO2 ions.
W. Nam, J. Am. Chem. Soc., 2013, 135, 14900.
7 P. V. B. Reddy, K. V. R. Rao and M. D. Norenberg, Lab.
Invest., 2008, 88, 816.
8 D. D. Thomas, M. G. Espey, M. P. Vitek, K. M. Miranda and
D. A. Wink, Proc. Natl. Acad. Sci. U. S. A., 2002, 99,
1
1
+
Acknowledgements
12691.
1
2
2
2
2
9 S. P. A. Goss, R. J. Singh and B. Kalyanaraman, J. Biol.
Chem., 1999, 274, 28233.
The authors thank the Department of Science and Technology
(DST), India for financial support. VK thanks CSIR, India for
0 R. J. Singh, S. P. A. Goss, J. Joseph and B. Kalyanaraman,
Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 12912.
1 H. Zhang, J. Joseph, C. Felix and B. Kalyanaraman, J. Biol.
Chem., 2000, 275, 14038.
2 M. G. Bonini, D. C. Fernandes and O. Augusto, Bio-
chemistry, 2004, 43, 344.
a
fellowship. The authors express their gratitude to
Dr T. K. Paine, Indian Association for the Cultivation
of Sciences, Kolkata, India for extending his help to record
UV-visible spectra at his laboratory.
3 J. S. Beckman, M. Carson, C. D. Smith and
W. H. Koppenol, Nature, 1993, 364, 584.
References
1
2
3
S. K. Wattanapitayakul, D. M. Weinstein, B. J. Holycross 24 D. D. Thomas, M. G. Espey, M. P. Vitek, K. M. Miranda and
and J. A. Bauer, FASEB J., 2000, 14, 271.
D. A. Wink, Proc. Natl. Acad. Sci. U. S. A., 2002, 99,
P. Ferdinandy, H. Danial, I. Ambrus, R. A. Rothery and
R. Schulz, Circ. Res., 2000, 87, 241.
J. Oyama, H. Shimokawa, H. Momii, X. Cheng,
12691.
25 L. Qiao, Y. Lu, B. Liu and H. H. Girault, J. Am. Chem. Soc.,
2011, 133, 19823.
N. Fukuyama, Y. Arai, K. Egashira, H. Nakazawa and 26 Y. Shimazaki, S. Huth, A. Odani and O. Yamauchi, Angew.
A. Takeshita, J. Clin. Invest., 1998, 101, 2207. Chem., Int. Ed., 2000, 39, 1666.
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015