610 Li et al.
Asian J. Chem.
4. S.J. Stohs and H.G. Preuss, J. Funct. Foods, 4, 2 (2012).
However, the introducing of chiral acid still can not reach
5. P. Kraft and A. Mannschreck, J. Chem. Educ., 87, 598 (2010).
6. D. Lehmann, B. Maas and A. Mosandl, Z. Lebensm. Unters. Forsch.,
201, 55 (1995).
at the top specific rotation. Therefore, the optimum anhydride
is isobutyric anhydride. The Baeyer-Villiger oxidation was
performed with the hydrolyzate of (2) and the ee % of (R)-δ-
decalactone is 81.06 %.
7. T. Ohta, T. Miyake, N. Seido, H. Kumobayashi and H. Takaya, J. Org.
Chem., 60, 357 (1995).
8. T. Yamamoto, M. Ogura, A. Amano, K. Adachi, T. Hagiwara and T.
Kanisawa, Tetrahedron Lett., 43, 9081 (2002).
Conclusion
9. M. Treilhou, A. Fauve, J.R. Pougny, J.C. Prome and H. Veschambre, J.
Org. Chem., 57, 3203 (1992).
The performance of Novozyme 435 hydrolyzing enol ester
was improved enormously by bringing in a chiral (S)-(+)-2-
methylbutyric acid moiety compared to racemic 2-methyl-
butyric acid, while further increase depends on variety of
anhydride. The optimum anhydride is isobutyric anhydride
and enantioselectivity was strongly affected by the changes in
pH and temperature in the hydrolysis of (2). From the structural
point of view, the enantioselectivity enhancement was probably
due to the acid moiety filled in the stereo specificity pocket
affect the alchol moiety filled the groove at the site of active
centre in the process of hydrolysis. The method may be applied
in the synthesis of chiral 2-substituted ketone or alcohol.
10. E.N. Jacobsen and N.S. Finney, Chem. Biol., 1, 85 (1994).
11. P.H. van der Schaft, N. ter Burg, S. van den Bosch and A.M. Cohe,
Appl. Microbiol. Biotechnol., 36, 712 (1992).
12. P. D'Arrigo, C. Fuganti, G. Pedrocchi Fantoni and S. Servi, Tetrahedron,
54, 15017 (1998).
13. G.T. Muys, B. Van Der Ven and A.P. DeJonge, Appl. Microbiol., 11,
389 (1963).
14. K. Matsumoto, S. Tsutsumi, T. Ihori and H. Ohta, J. Am. Chem. Soc.,
112, 9614 (1990).
15. T. Hirata, K. Shimoda and T. Kawano, Tetrahedron Asymm., 11, 1063
(2000).
16. T. Sakai, A. Matsuda, Y. Tanaka, T. Korenaga and T. Ema, Tetrahedron
Asymm., 15, 1929 (2004).
17. T. Kashiwagi, K. Fujimori, S. Kozuka and S. Oae, Tetrahedron, 26,
3647 (1970).
ACKNOWLEDGEMENTS
18. S.L. Schreiber and W.F. Liew, Tetrahedron Lett., 24, 2363 (1983).
19. T. Yakura, T. Kitano, M. Ikeda and J. Uenishi, Tetrahedron Lett., 43,
6925 (2002).
The authors thank Shanghai Institute of Technology for
funding the current study and also thank to Dr. Rong Shaofeng
for his advices throughout this research work. Thanks to Shi
Zhangping and Yu Jinsheng for their constant help in the de-
tection of specific rotation and ee %.
20. J.-M. Paul and P. Busca, Process for the Manufacture of Isobutyric
Anhydride, US Patent 7049467 (2006).
21. T. Ohta, T. Miyake, N. Seido, H. Kumobayashi, S. Akutagawa and H.
Takaya, Tetrahedron Lett., 33, 635 (1992).
22. J. Uppenberg, N. Oehrner, M. Norin, K. Hult, G.J. Kleywegt, S. Patkar,
V. Waagen, T. Anthonsen and T.A. Jones, Biochem., 34, 16838 (1995).
23. D.M. Blow and T.A. Steitz, Annu. Rev. Biochem., 39, 63 (1970).
24. G.D. Yadav and P.S. Lathi, J. Mol. Catal. B, Enzym., 27, 113 (2004).
25. S.N. Ahmed, R.J. Kazlauskas, A.H. Morinville, P. Grochulski, J.D.
Schrag and M. Cygler, Biocatal. Biotransform., 9, 209 (1994).
REFERENCES
1. M.H. Boelens and L.J. Gernert, Perfum. Flavor., 18, 1 (1993).
2. H. Guth, Helv. Chim. Acta, 79, 1559 (1996).
3. J.A. Bajgrowicz, I. Frank, G. Frater and M. Hennig, Helv. Chim. Acta,
81, 1349 (1998).