396
L.-X. Yu et al. / Chinese Chemical Letters 25 (2014) 389–396
[24] Y. Zhao, Light-responsive block copolymer micelles, Macromolecules 45 (2012)
References
3647–3657.
[25] X.K. Liu, M. Jiang, Optical switching of self-assembly: micellization and micelle-
hollow-sphere transition of hydrogen-bonded polymers, Angew. Chem. Int. Ed. 45
(2006) 3846–3850.
[26] L. Ming, L.Y. Gu, Q. Zhang, M.Z. Xue, Y.G. Liu, Preparation and study of photo-
switchable fluorescence nanoparticles based on spirobenzopyran, Chin. Chem.
Lett. 24 (2013) 1014–1018.
[27] J.L. Mynar, A.P. Goodwin, J.A. Cohen, et al., Two-photon degradable supramolec-
ular assemblies of linear-dendritic copolymers, Chem. Commun. 20 (2007) 2081–
2082.
[28] D.H. Han, X. Tong, Y. Zhao, Fast photodegradable block copolymer micelles for
burst release, Macromolecules 44 (2011) 437–439.
[29] Y. Zhao, J. Bertrand, X. Tong, Y. Zhao, Photo-cross-linkable polymer micelles in
hydrogen-bonding-built layer-by-layer films, Langmuir 25 (2009) 13151–
13157.
[30] J.T. Lai, D. Filla, R. Shea, Functional polymers from novel carboxyl-terminated
trithiocarbonates as highly efficient RAFT agents, Macromolecules 35 (2002)
6754–6756.
[31] D.J. Chung, Y. Ito, Y. Imanishi, Preparation of porous membranes grafted with poly
(spiropyran-containing methacrylate) and photocontrol of permeability, J. Appl.
Polym. Sci. 51 (1994) 2027–2033.
[32] S.I. Yusa, Y. Yokoyama, Y. Morishima, Synthesis of oppositely charged block
copolymers of poly(ethylene glycol) via reversible addition-fragmentation chain
transfer radical polymerization and characterization of their polyion complex
micelles in water, Macromolecules 42 (2009) 376–383.
[1] Y.L. Yu, M. Nakano, T. Ikeda, Photomechanics: directed bending of a polymer film
by light, Nature 425 (2003) 145.
[2] H. Lee, W. Wu, J.K. Oh, et al., Light-induced reversible formation of polymeric
micelles, Angew. Chem. Int. Ed. 46 (2007) 2453–2457.
`
[3] V.K. Kotharangannagari, A. Sanchez-Ferrer, J. Ruokolainen, R. Mezzenga, Photo-
responsive reversible aggregation and dissolution of rod-coil polypeptide diblock
copolymers, Macromolecules 44 (2011) 4569–4573.
[4] S. Dai, P. Ravi, K.C. Tam, pH-responsive polymers: synthesis, properties and
applications, Soft Matter 4 (2008) 435–449.
[5] S. Yusa, M. Sugahara, T. Endo, Y. Morishima, Preparation and characterization of a
pH-responsive nanogel based on a photo-cross-linked micelle formed from block
copolymers with controlled structure, Langmuir 25 (2009) 5258–5265.
[6] G. Wu, S.C. Chen, Q. Zhan, Y.Z. Wang, Well-defined amphiphilic biodegradable
comb-like graft copolymers: their unique architecture-determined LCST and
UCST thermoresponsivity, Macromolecules 44 (2011) 999–1008.
[7] A.P. Vogt, B.S. Sumerlin, Temperature and redox responsive hydrogels from ABA
triblock copolymers prepared by RAFT polymerization, Soft Matter 5 (2009)
2347–2351.
[8] J.M. Hu, G.Y. Zhang, Y.H. Geng, S.Y. Liu, Micellar nanoparticles of coil-rod-coil
triblock copolymers for highly sensitive and ratiometric fluorescent detection of
fluoride Ions, Macromolecules 44 (2011) 8207–8214.
[9] C.J. Chen, Q. Jin, G.Y. Liu, et al., Reversibly light-responsive micelles constructed
via a simple modification of hyperbranched polymers with chromophores, Poly-
mer 53 (2012) 3695–3703.
[33] Y.K. Chong, J. Krstina, T.P.T. Le, et al., Thiocarbonylthio compounds [SC(Ph)S–R] in
free radical polymerization with reversible addition-fragmentation chain transfer
(RAFT polymerization). Role of the free-radical leaving group (R), Macromolecules
36 (2003) 2256–2272.
[34] Y. Cao, X.X. Zhu, J.T. Luo, H.Y. Liu, Effects of substitution groups on the RAFT
polymerization of N-alkylacrylamides in the preparation of thermosensitive
block copolymers, Macromolecules 40 (2007) 6481–6488.
[35] K. Sumaru, M. Kameda, T. Kanamori, T. Shinbo, Characteristic phase transition of
aqueous solution of poly (N-isopropylacrylamide) functionalized with spiroben-
zopyran, Macromolecules 37 (2004) 4949–4955.
[36] A.Y. Bobrovsky, N.I. Boiko, V.P. Shibaev, Photosensitive cholesteric copolymers
with spiropyran-containing side groups: novel materials for optical data record-
ing, Adv. Mater. 11 (1999) 1025–1028.
[37] D.S. Achilleos, M. Vamvakaki, Multiresponsive spiropyran-based copolymers
synthesized by atom transfer radical polymerization, Macromolecules 43
(2010) 7073–7081.
[38] M. Piech, N.S. Bell, Controlled synthesis of photochromic polymer brushes by
atom transfer radical polymerization, Macromolecules 39 (2006) 915–922.
[39] G.Y. Jiang, Y.L. Song, X.F. Guo, D.Q. Zhang, D.B. Zhu, Organic functional molecules
towards information processing and high-density information storage, Adv.
Mater. 20 (2008) 2888–2898.
[10] C.Q. Huang, Y. Wang, C.Y. Hong, C.Y. Pan, Spiropyran-based polymeric vesicles:
preparation and photochromic properties, Macromol. Rapid Commun. 32 (2011)
1174–1179.
[11] C.S. Brazel, Magnetothermally-responsive nanomaterials: combining magnetic
nanostructures and thermally-sensitive polymers for triggered drug release,
Pharm. Res. 26 (2009) 644–656.
[12] M. Irie, Photoresponsive polymers. Reversible bending of rod-shaped acrylamide
gels in an electric field, Macromolecules 19 (1986) 2890–2892.
[13] H.T.T. Duong, C.P. Marquis, M. Whittaker, T.P. Davis, C. Boyer, Acid degradable and
biocompatible polymeric nanoparticles for the potential codelivery of therapeutic
agents, Macromolecules 44 (2011) 8008–8019.
[14] Y.H. Wang, M. Zheng, F.H. Meng, et al., Branched polyethylenimine derivatives
with reductively cleavable periphery for safe and efficient in vitro gene transfer,
Biomacromolecules 12 (2011) 1032–1040.
[15] T.A. Darwish, R.A. Evans, M. James, et al., CO2 triggering and controlling orthogo-
nally multiresponsive photochromic systems, J. Am. Chem. Soc. 132 (2010)
10748–10755.
[16] D.H. Han, X. Tong, O. Boissie`re, Y. Zhao, General strategy for making CO2-
switchable polymers, ACS Macro Lett. 1 (2012) 57–61.
[17] J.P. Magnusson, A. Khan, G. Pasparakis, et al., Ion-sensitive ‘‘isothermal’’ respon-
sive polymers prepared in water, J. Am. Chem. Soc. 130 (2008) 10852–10853.
[18] D.B. Liu, W.W. Chen, K. Sun, et al., Resettable, multi-readout logic gates based on
controllably reversible aggregation of gold nanoparticles, Angew. Chem. Int. Ed.
50 (2011) 4103–4107.
[40] M.Q. Zhu, L.Y. Zhu, J.J. Han, et al., Spiropyran-based photochromic polymer
nanoparticles with optically switchable luminescence, J. Am. Chem. Soc. 128
(2006) 4303–4309.
[41] D.S. Achilleos, T.A. Hatton, M. Vamvakaki, Light-regulated supramolecular engi-
neering of polymeric nanocapsules, J. Am. Chem. Soc. 134 (2012) 5726–5729.
[42] K.E. Sapsford, L. Berti, I.L. Medintz, Materials for fluorescence resonance energy
transfer analysis: beyond traditional donor-acceptor combinations, Angew.
Chem. Int. Ed. 45 (2006) 4562–4589.
[43] Y. Wang, C.Y. Hong, C.Y. Pan, Spiropyran-based hyperbranched star copolymer:
synthesis, phototropy, FRET, and bioapplication, Biomacromolecules 13 (2012)
2585–2593.
[44] J. Chen, F. Zeng, S.Z. Wu, Q.M. Chen, Z. Tong, A core–shell nanoparticle approach to
photoreversible fluorescence modulation of a hydrophobic dye in aqueous media,
Chem. Eur. J. 14 (2008) 4851–4860.
[45] J. Fo¨ling, S. Polyakova, V. Belov, et al., Synthesis and characterization of photo-
switchable fluorescent silica nanoparticles, Small 4 (2008) 134–142.
[19] M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai, Organic chemistry: a digital
fluorescent molecular photoswitch, Nature 420 (2002) 759–760.
[20] Y.M. Li, Y.F. Qian, T. Liu, G.Y. Zhang, S.Y. Liu, Light-triggered concomitant en-
hancement of magnetic resonance imaging contrast performance and drug
release rate of functionalized amphiphilic diblock copolymer micelles, Bioma-
cromolecules 13 (2012) 3877–3886.
[21] S. Wang, Y. Song, L.J. Jiang, Photoresponsive surfaces with controllable wettabili-
ty, Photochem. Photobiol. C 8 (2007) 18–29.
[22] M.Q. Zhu, G.F. Zhang, C. Li, et al., Reversible two-photon photoswitching and two-
photon imaging of immunofunctionalized nanoparticles targeted to cancer cells,
J. Am. Chem. Soc. 133 (2011) 365–372.
[23] A. Nayak, H. Liu, G. Belfort, An optically reversible switching membrane surface,
Angew. Chem. Int. Ed. 45 (2006) 4094–4098.