MSRs Preferentially Reduce Unfolded Oxidized Proteins
An analysis of yeast cells grown in the presence of NaOCl 12. Minniti, A. N., Cataldo, R., Trigo, C., Vasquez, L., Mujica, P., Leighton, F.,
Inestrosa, N. C., and Aldunate, R. (2009) Methionine sulfoxide reductase
showed an involvement of MSRs in protection against oxidative
A expression is regulated by the DAF-16/FOXO pathway in Caenorhab-
unfolding stress (Fig. 5). Indeed, the MSRA-null mutant and
ditis elegans. Aging Cell 8, 690–705
especially MSRA/MSRB-null cells were more sensitive than
WT cells to hypochlorite treatment, and overexpression of
MSRA protected cells from this stressor. Similar effects were
observed in prokaryotes (15, 16). Interestingly, overexpression
of two Met-rich proteins also conferred protection, very likely
due to reversible Met oxidation/reduction. This observation
shows that the higher MSR activity with unfolded proteins was
relevant in vivo during the NaOCl stress that triggered unfold-
ing of proteins. This property may be particularly important
during the oxidative battle between neutrophils and pathogens
wherein both opponents induce protein oxidation and use
MSRs as a sword and shield strategy (44, 45). Overall, our find-
ings suggest that a major protective function of MSRs in the cell
is to rescue and repair oxidized nascent polypeptides and
unfolded proteins.
1
3. Laugier, E., Tarrago, L., Vieira Dos Santos, C., Eymery, F., Havaux, M., and
Rey, P. (2010) Arabidopsis thaliana plastidial methionine sulfoxide reduc-
tases B, MSRBs, account for most leaf peptide MSR activity and are essen-
tial for growth under environmental constraints through a role in the
preservation of photosystem antennae. Plant J. 61, 271–282
1
4. Shchedrina, V. A., Kabil, H., Vorbruggen, G., Lee, B. C., Turanov, A. A.,
Hirosawa-Takamori, M., Kim, H. Y., Harshman, L. G., Hatfield, D. L., and
Gladyshev, V. N. (2011) Analyses of fruit flies that do not express seleno-
proteins or express the mouse selenoprotein, methionine sulfoxide reduc-
tase B1, reveal a role of selenoproteins in stress resistance. J. Biol. Chem.
286, 29449–29461
1
5. Lee, W. L., Gold, B., Darby, C., Brot, N., Jiang, X., de Carvalho, L. P.,
Wellner, D., St John, G., Jacobs, W. R., Jr., and Nathan, C. (2009) Myco-
bacterium tuberculosis expresses methionine sulphoxide reductases A
and B that protect from killing by nitrite and hypochlorite. Mol. Microbiol.
71, 583–593
16. Mahawar, M., Tran, V., Sharp, J. S., and Maier, R. J. (2011) Synergistic roles
of Helicobacter pylori methionine sulfoxide reductase and GroEL in re-
pairing oxidant-damaged catalase. J. Biol. Chem. 286, 19159–19169
Acknowledgment—We thank Dr. Pascal Rey (CEA-Cadarache) for
the kind gift of dabsyl-MetO.
1
7. Winter, J., Ilbert, M., Graf, P. C., Ozcelik, D., and Jakob, U. (2008) Bleach
activates a redox-regulated chaperone by oxidative protein unfolding. Cell
135, 691–701
1
8. Ezraty, B., Grimaud, R., El Hassouni, M., Moinier, D., and Barras, F. (2004)
Methionine sulfoxide reductases protect Ffh from oxidative damages in
Escherichia coli. EMBO J. 23, 1868–1877
REFERENCES
1
. Zhang, X. H., and Weissbach, H. (2008) Origin and evolution of the pro-
tein-repairing enzymes methionine sulphoxide reductases. Biol. Rev. 19. Tarrago, L., Kieffer-Jaquinod, S., Lamant, T., Marcellin, M. N., Garin, J. R.,
Camb. Philos. Soc. 83, 249–257
Rouhier, N., and Rey, P. (2012) Affinity chromatography. A valuable strat-
egy to isolate substrates of methionine sulfoxide reductases? Antioxid.
Redox Signal. 16, 79–84
2
. Tarrago, L., Laugier, E., Zaffagnini, M., Marchand, C., Le Mar e´ chal, P.,
Rouhier, N., Lemaire, S. D., and Rey, P. (2009) Regeneration mechanisms
of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredox- 20. Koc, A., Gasch, A. P., Rutherford, J. C., Kim, H. Y., and Gladyshev, V. N.
ins and thioredoxins. J. Biol. Chem. 284, 18963–18971
. Boschi-Muller, S., Gand, A., and Branlant, G. (2008) The methionine sulf-
oxide reductases. Catalysis and substrate specificities. Arch. Biochem. Bio-
phys. 474, 266–273
(2004) Methionine sulfoxide reductase regulation of yeast lifespan reveals
reactive oxygen species-dependent and -independent components of ag-
ing. Proc. Natl. Acad. Sci. U.S.A. 101, 7999–8004
3
4
5
21. Le, D. T., Lee, B. C., Marino, S. M., Zhang, Y., Fomenko, D. E., Kaya, A.,
Hacioglu, E., Kwak, G. H., Koc, A., Kim, H. Y., and Gladyshev, V. N. (2009)
Functional analysis of free methionine-R-sulfoxide reductase from Sac-
charomyces cerevisiae. J. Biol. Chem. 284, 4354–4364
. Oien, D. B., and Moskovitz, J. (2008) Substrates of the methionine sulfox-
ide reductase system and their physiological relevance. Curr. Top. Dev.
Biol. 80, 93–133
. Erickson, J. R., Joiner, M. L., Guan, X., Kutschke, W., Yang, J., Oddis, C. V., 22. Le, D. T., Liang, X., Fomenko, D. E., Raza, A. S., Chong, C. K., Carlson,
Bartlett, R. K., Lowe, J. S., O’Donnell, S. E., Aykin-Burns, N., Zimmerman,
M. C., Zimmerman, K., Ham, A. J., Weiss, R. M., Spitz, D. R., Shea, M. A.,
Colbran, R. J., Mohler, P. J., and Anderson, M. E. (2008) A dynamic path-
way for calcium-independent activation of CaMKII by methionine oxida-
tion. Cell 133, 462–474
B. A., Hatfield, D. L., and Gladyshev, V. N. (2008) Analysis of methionine/
selenomethionine oxidation and methionine sulfoxide reductase function
using methionine-rich proteins and antibodies against their oxidized
forms. Biochemistry 47, 6685–6694
23. Vieira Dos Santos, C., Cuin e´ , S., Rouhier, N., and Rey, P. (2005) The Ara-
bidopsis plastidic methionine sulfoxide reductase B proteins. Sequence
and activity characteristics, comparison of the expression with plastidic
methionine sulfoxide reductase A, and induction by photooxidative stress.
Plant Physiol. 138, 909–922
6
7
. Luo, S., and Levine, R. L. (2009) Methionine in proteins defends against
oxidative stress. FASEB J. 23, 464–472
. Barnham, K. J., Ciccotosto, G. D., Tickler, A. K., Ali, F. E., Smith, D. G.,
Williamson, N. A., Lam, Y. H., Carrington, D., Tew, D., Kocak, G., Volita-
kis, I., Separovic, F., Barrow, C. J., Wade, J. D., Masters, C. L., Cherny, R. A.,
Curtain, C. C., Bush, A. I., and Cappai, R. (2003) Neurotoxic, redox-com-
petent Alzheimer’s -amyloid is released from lipid membrane by methi-
onine oxidation. J. Biol. Chem. 278, 42959–42965
24. Yates, J. R., 3rd, Eng, J. K., McCormack, A. L., and Schieltz, D. (1995)
Method to correlate tandem mass spectra of modified peptides to amino
acid sequences in the protein database. Anal. Chem. 67, 1426–1436
25. Tabb, D. L., McDonald, W. H., and Yates, J. R., 3rd (2002) DTASelect and
Contrast. Tools for assembling and comparing protein identifications
from shotgun proteomics. J. Proteome Res. 1, 21–26
8
. Breydo, L., Bocharova, O. V., Makarova, N., Salnikov, V. V., Anderson, M.,
and Baskakov, I. V. (2005) Methionine oxidation interferes with conver-
sion of the prion protein into the fibrillar proteinase K-resistant confor-
mation. Biochemistry 44, 15534–15543
26. Zhang, T., Faraggi, E., Xue, B., Dunker, A. K., Uversky, V. N., and Zhou, Y.
(2012) SPINE-D. Accurate prediction of short and long disordered regions
by a single neural-network-based method. J. Biomol. Struct. Dyn. 29,
799–813
9
. Colombo, G., Meli, M., Morra, G., Gabizon, R., and Gasset, M. (2009)
Methionine sulfoxides on prion protein Helix-3 switch on the ␣-fold de-
stabilization required for conversion. PLoS ONE 4, e4296
27. Mizianty, M. J., Stach, W., Chen, K., Kedarisetti, K. D., Disfani, F. M., and
Kurgan, L. (2010) Improved sequence-based prediction of disordered re-
gions with multilayer fusion of multiple information sources. Bioinformat-
ics 26, i489–496
1
1
0. Mulinacci, F., Bell, S. E., Capelle, M. A., Gurny, R., and Arvinte, T. (2011)
Oxidized recombinant human growth hormone that maintains confor-
mational integrity. J. Pharm. Sci. 100, 110–122
1. Gao, J., Yao, Y., and Squier, T. C. (2001) Oxidatively modified calmodulin 28. Tsodikov, O. V., Record, M. T., Jr., and Sergeev, Y. V. (2002) Novel com-
binds to the plasma membrane Ca-ATPase in a nonproductive and con-
formationally disordered complex. Biophys. J. 80, 1791–1801
puter program for fast exact calculation of accessible and molecular sur-
face areas and average surface curvature. J. Comput. Chem. 23, 600–609
2
4458 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 287•NUMBER 29•JULY 13, 2012