Mendeleev Commun., 2019, 29, 172–173
was isolated as the main product in 51% yield. The H, 13C
§
1
Online Supplementary Materials
1
NMR and HRMS data of the synthesized compound 1 were
close to the reported ones for the natural sample. Therefore,
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2019.03.018.
7
our synthetic strategy may be considered as an efficient one from
the viewpoint of simple steps, lowcost materials, mild reaction
conditions and easy operations, and definitely has a potential for
the synthesis of other isatin derivatives.
In conclusion, the first synthesis of 7prenylisatin was developed
from commercially available 2methylbut3en2ol and aniline
using a fivestep procedure involving the aromatic azaClaisen
rearrangement of Nprenylated aniline and the Sandmeyer reaction
for preparing isonitrosoacetanilide isatin as key steps. The synthetic
strategy can provide rapid access to various analogues of (prenyl)
isatin derivatives, which is helpful in evaluation of biological
activity and search for new lead compounds.
References
1
D. J. Newman, G. M. Cragg and K. M. Snader, J. Nat. Prod., 2003, 66,
1022.
2 V. A. D’yakonov, A. A. Makarov, L. U. Dzhemileva, E. N. Andreev and
U. M. Dzhemilev, Mendeleev Commun., 2017, 27, 122.
3
4
N. S. Vostrikov, I. F. Lobko, L. V. Spirikhin, Yu. V. Vakhitova, K. K.
Pivnitsky and M. S. Miftakhov, Mendeleev Commun., 2017, 27, 125.
D. A. Gruzdev, E. N. Chulakov, G. L. Levit, M. A. Kravchenko, V. P.
Krasnov and V. N. Charushin, Mendeleev Commun., 2017, 27, 547.
5 G. V. Pazynina, S. V. Tsygankova, I. M. Ryzhov, A. S. Paramonov and
N. V. Bovin, Mendeleev Commun., 2018, 28, 421.
6
7
D. J. Newman and G. M. Cragg, J. Nat. Prod., 2012, 75, 311.
C. Wu, C. Du, J. Gubbens,Y. H. Choi and G. P. van Wezel, J. Nat. Prod.,
2
015, 78, 2355.
This work was supported by the Applied Basic Research and
Development Programs of Science and Technology Foundation
of Ya’an (2017YYJSKF15). We are grateful to Mr. Wei Wang
8
K. L. Vine, L. Matesic, J. M. Locke, M. Ranson and D. Skropeta, Anti-
Cancer Agents Med. Chem., 2009, 9, 397.
9 J. Breinholt, H. Demuth, M. Heide, G. W. Jensen, I. L. Møller, R. I. Nielsen,
C. E. Olsen and C. N. Rosendahl, Acta Chem. Scand., 1996, 50, 443.
0 U. Gräfe and L. Radics, J. Antibiot., 1986, 39, 162.
1 J. Ruchti and E. M. Carreira, J. Am. Chem. Soc., 2014, 136, 16756.
2 M.A. Cooper, M.A. Lucas, J. M. Taylor,A. D.Ward and N. M.Williamson,
Synthesis, 2001, 621.
(Shandong Huijing Biopharma Co., Ltd.) for the NMR analysis
1
1
1
and discussion.
§
7
-Prenylisatin 1. Concentrated H SO (7 ml) was warmed to 50°C
2 4
with stirring, then (E)2(hydroxyimino)N[2(3methylbut2en1yl)
phenyl]acetamide 3 (0.81 g, 3.5 mmol) was added in batches to keep the
temperature between 60 and 70°C. After that, the mixture was heated to
13 K. D. Beare and C. S. P. McErlean, Org. Biomol. Chem., 2013, 11, 2452.
14 I. T. Alt, C. Guttroff and B. Plietker, Angew. Chem., Int. Ed., 2017, 56,
10582.
8
0°C and kept at this temperature for ca. 10 min to complete the reaction.
15 H. Xu, J. He, J. Shi, L. Tan, D. Qiu, X. Luo andY. Li, J. Am. Chem. Soc.,
2018, 140, 3555.
Then the mixture was cooled to room temperature and poured into ice
water with continuous stirring for ca. 30 min. The orange precipitate was
filtered off, washed with water and recrystallized from EtOH–H O (1:1,
v/v) to afford compound 1 (0.38 g, 51%) as orange solid, mp 177–180°C.
IR (n/cm ): 1120, 1240, 1310, 1475, 1610, 1655, 1690, 2970, 3410. H
NMR (400 MHz, CDCl ) d: 1.75 (s, 3H, Me), 1.77 (s, 3H, Me), 3.26 (d,
2
1
1
1
6 T. Sandmeyer, Helv. Chim. Acta, 1919, 2, 234.
7 V. Lisowski, M. Robba and S. Rault, J. Org. Chem., 2000, 65, 4193.
8 S. Lin, Z.Q. Yang, B. H. B. Kwok, M. Koldobskiy, C. M. Crews and
S. J. Danishefsky, J. Am. Chem. Soc., 2004, 126, 6347.
2
–1
1
19 Y. Ferandin, K. Bettayeb, M. Kritsanida, O. Lozach, P. Polychronopoulos,
3
P. Magiatis, A.L. Skaltsounis and L. Meijer, J. Med. Chem., 2006, 49,
H, CH , J 7.2 Hz), 5.25–5.20 (m, 1H, CH), 7.07–7.01 (m, 1H, Ar), 7.37
2
4
638.
13
(d, 1H, Ar, J 7.8 Hz), 7.48 (d, 1H, Ar, J 7.8 Hz). C NMR (100 MHz,
CDCl ) d: 18.5 (Me), 26.6 (Me), 30.0 (CH ), 118.1 (CH), 120.5 (Ar),
3
2
1
1
24.2 (Ar), 124.5 (Ar), 125.5 (Me C), 136.4 (Ar), 139.8 (Ar), 148.2 (Ar),
59.1 (C=O), 183.2 (C=O). HRMS (ESI), m/z: 216.1017 [M+H] (calc.
2
+
for C H NO , m/z: 216.1019).
Published data for comparison. H NMR (600 MHz, CDCl ) d: 1.78
13
14
2
7
1
3
(
br.s, 3H, Me), 1.80 (d, 3H, Me, J 1.2 Hz), 3.31 (br.d, 2H, CH , J 7.2 Hz),
2
5
7
2
1
.24 (m, 1H, CH), 7.06 (t, 1H, Ar, J 7.8 Hz), 7.39 (br.d, 1H, Ar, J 7.8 Hz),
.49 (br.d, 1H, Ar, J 7.8 Hz). 13C NMR (125 MHz, CDCl ) d: 18.3 (Me),
3
5.9 (Me), 29.7 (CH ), 118.4 (CH), 120.0 (Ar), 123.7 (Ar), 124.0 (Ar),
2
25.1 (Me C), 136.1 (Ar), 139.1 (Ar), 147.9 (Ar), 159.2 (C=O), 183.1
2
+
(
C=O). HRMS (ESI), m/z: 216.1018 [M+H] .
Received: 3rd October 2018; Com. 18/5708
–
173 –