LETTER
A New Biginelli Reaction Procedure Using Potassium Hydrogen Sulfate
539
(10) Studer, A.; Jeger, P.; Wipf, P.; Curran, D. P. J. Org. Chem.
1997, 62, 2917.
(11) Bigi, F.; Carloni, S.; Frullanti, B.; Maggi, R.; Sartori, G.
Tetrahedron Lett. 1999, 40, 3465.
(12) Hu, E. H.; Silder, D. R.; Dolling, U. H. J. Org. Chem. 1998,
63, 3454.
(13) Kappe, C. O.; Kumar, D.; Varma, R. S. Synthesis 1999,
1799.
(14) Lu, J.; Bai, Y. J.; Wang, Z. J.; Yang, B. Q.; Ma, H. R.
Tetrahedron Lett. 2000, 41, 9075.
(15) Ma, Y.; Qian, C. T.; Wang, L. M.; Yang, M. J. Org. Chem.
2000, 65, 3864.
(16) Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65,
6270.
(17) Ramalinga, K.; Vijayalakshmi, P.; Kaimal, T. N. B. Synlett
2001, 863.
+
OH
N
O
O
H+
H+
OH2
R1
+
R1
NH2
R1
H2N
NH2
H
NH2
N
O
H
O
H
H
O
O
H
H+
-H2O
R1
R2
H
Me
NH2
R1
NH2
N
+
N
O
H
O
R1
R1
O
R2OC
Me
Dehydration
NH
R2
NH
Promoted by
glycol
O
O
N
H
Me
H2N
O
(18) Reddy, C. V.; Mahesh, M.; Raju, P. V. K.; Bubu, R.; Reddy,
V. V. N. Tetrahedron Lett. 2002, 43, 2657.
(19) Maiti, G.; Kundu, P.; Guin, C. Tetrahedron Lett. 2003, 44,
2757.
Scheme 4
enolate intermediate. The solvent glycol can particularly
accelerate dehydration reaction of the last step.
(20) Lu, J.; Bai, Y. J. Synthesis 2002, 466.
(21) Fu, N. Y.; Yuan, Y. F.; Gao, Z.; Wang, S. W.; Wang, J. T.;
Peppe, C. Tetrahedron Lett. 2002, 58, 4801.
In conclusion, KHSO4 can be applied as an efficient cata-
lyst not only for the open-chained 1,3-dicarbonyl com-
pounds, but also for cyclic 1,3-dicarbonyl compounds. In
addition, the catalyst is suitable for the aromatic, aliphatic
and hetrocyclic aldehydes. The application of this novel
catalyst resulted in decreased reaction time and increased
yields of the potentially biologically active dihydropyri-
midinone derivatives. This method also has the advantage
of an easy work-up and being environmentally friendly
because of the atomic economy.
(22) Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Fard, M. A.
Tetrahedron Lett. 2003, 44, 2889.
(23) Tu, S. J.; Fang, F.; Miao, C. B.; Jiang, H.; Shi, D. Q.; Wang,
X. S. Tetrahedron Lett. 2003, 44, 6153.
(24) (a) Folkers, K.; Harwood, H. J.; Johnson, T. B. J. Am. Chem.
Soc. 1932, 54, 3751. (b) Folkers, K.; Johnson, T. B. J. Am.
Chem. Soc. 1933, 55, 3784.
(25) The general procedure is as follows: A solution of the
appropriate aldehyde (3 mmol) or dialdehyde (1.5 mmol),
1,3-dicarbonyl compound (3 mmol), urea (3.6 mmol), and
KHSO4 (0.75 mmol) in glycol (10 mL) was heated at 100 °C
with stirring for 0.5–2 h before cooled down to r.t. The
mixture was then poured into 50 mL of ice-water. The solid
product was filtered, washed with ice-water and EtOH
(95%), and subsequently dried and recrystallized from EtOH
to give pure product. All products (except 8a,b, 6a–e, 9a,b)
are known compounds, which were characterized by mp, IR
and 1H NMR spectral data. Compound 4p: mp 280–282 °C.
IR (KBr): 3539, 3232, 3108, 2954, 1702, 1644, 1530 cm–1.
1H NMR (DMSO-d6): d = 9.38 (s, 1 H, NH), 8.13–8.11 (m,
2 H, Ar-H), 7.91 (s, 1 H, NH), 7.66–7.61 (m, 2 H, Ar-H),
5.29 (d, J = 3.1 Hz, 1 H, CH), 3.53 (s, 3 H, OCH3), 2.26 (s,
3 H, CH3). Compound 4t: mp 205 °C. IR (KBr): 3413, 3239,
3119, 2984, 1702, 1644, 1457 cm–1. 1H NMR (DMSO-d6):
d = 9.22 (s, 1 H, NH), 7.74 (s, 1 H, NH), 7.53 (s, 1 H, furanH),
6.33 (d, J = 2.8 Hz, 1 H, furanH), 6.07 (d, J = 2.8 Hz, 1 H,
furanH), 5.20 (s, 1 H, CH), 3.98 (q, J = 7.2 Hz, 2 H, CH2),
2.22 (s, 3 H, CH3), 1.09 (t, J = 7.2 Hz, 3 H, CH3). Compound
6d: mp >300 °C. IR (KBr): 3283, 3258, 3065, 2962, 1706,
1676, 1617, 1442, 1371, 1243, 1189, 1132, 1021, 946, 758
cm–1. 1H NMR (DMSO-d6): d = 9.59 (s, 1 H, NH), 7.83 (s, 1
H, NH), 7.59 (d, J = 8.4 Hz, 1 H, Ar-H), 7.43 (s, 1 H, Ar-H),
7.21 (d, J = 8.4 Hz, 1 H, Ar-H), 5.19 (s, 1 H, CH), 1.82–2.45
(m, 6 H, CH2). Compound 8b: mp >300 °C. IR (KBr): 3231,
3112, 2973, 1700, 1458, 1374, 1321, 1227, 1171, 1094, 808,
663 cm–1. 1H NMR (DMSO-d6): d = 9.18 (s, 2 H, NH), 7.69
(s, 2 H, NH), 7.17 (s, 4 H, Ar-H), 5.09 (s, 2 H, CH), 3.97 (q,
J = 7.2 Hz, 4 H, OCH2), 2.22 (s, 6 H, CH3), 1.09 (t, J = 7.2
Hz, 6 H, CH3). Compound 9b: mp >300 °C. IR (KBr): 3241,
2948, 1699, 1672, 1613, 1369, 1240, 1181, 806, 764 cm–1.
1H NMR (DMSO-d6): d = 9.45 (s, 2 H, NH), 7.69 (s, 2 H,
NH), 7.01–7.19 (m, 4 H, Ar-H), 5.05–5.11 (m, 2 H, CH),
1.93–2.49 (m, 12 H, CH2).
Acknowledgment
We thank the National Natural Science Foundation of China (No.
20372057), the Natural Science Foundation of the Jiangsu Province
(No. BK2001142) and the Natural Science Foundation of Jiangsu
Education Department (No. 01KJB150008) and the Key Laboratory
of Chemical Engineering & Technology of the Jiangsu Province
Foundation (No. KJS02060) for financial support.
References
(1) (a) Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.;
Moreland, S.; Hedberg, A.; O’Reilly, B. C. J. Med. Chem.
1991, 34, 806. (b) Rovnyak, G. C.; Atwal, K. S.; Hedberg,
A.; Kimball, S. D.; Moreland, S.; Gougoutas, J. Z.; O’Reilly,
B. C.; Schwart, J.; Malley, M. F. J. Med. Chem. 1992, 35,
3254. (c) Grover, G. J.; Dzwonczyk, S.; Mcmullen, D. M.;
Normadinam, C. S.; Slenph, P. G.; Moreland, S. J. J.
Cardiovasc. Pharmacol. 1995, 26, 289.
(2) Snider, B. B.; Shi, Z. P. J. Org. Chem. 1993, 58, 3828; and
references cited therein.
(3) Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360.
(4) O’Reilly, B. C.; Atwal, K. S. Heterocycles 1987, 26, 1185.
(5) Atwal, K. S.; O’Reilly, B. C.; Gougoutas, J. Z.; Malley, M.
F. Heterocycles 1987, 26, 1189.
(6) Atwal, K. S.; Rovnyak, G. C.; O’Reilly, B. C.; Schwartz, J.
J. Org. Chem. 1989, 54, 5898.
(7) Gupta, R.; Gupta, A. K.; Paul, S.; Kachroo, P. L. Ind. J.
Chem., Sect. B 1995, 34, 151.
(8) Wipf, P.; Cunningham, A. Tetrahedron Lett. 1995, 36, 7819.
(9) Studer, A.; Hadida, S.; Ferrito, R.; Kim, S. Y.; Jeger, P.;
Wipf, P.; Curran, D. P. Science 1997, 275, 823.
Synlett 2004, No. 3, 537–539 © Thieme Stuttgart · New York