Page 5 of 7
ACS Catalysis
1
2
3
4
5
6
7
8
9
Olsbye, U.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. Tuned to
Perfection: Ironing out the Defects in Metal−Organic Framework
UiO-66. Chem. Mater. 2014, 26, 4068−4071.
(19) (a) Ragon, F.; Horcajada, P.; Chevreau, H.; Hwang, Y. K.;
Lee, U-H.; Miller, S. R.; Devic, T.; Chang, J.-S.; Serre, C. In Situ
Energy-Dispersive X-Ray Diffraction for the Synthesis Optimization
and Scale-up of the Porous Zirconium Terephthalate UiO-66. Inorg.
Chem. 2014, 53, 2491−2500; (b) Gutov, O. V.; González Hevia, M.;
Escudero-Adán, E. C.; Shafir, A. Metal−Organic Framework (MOF)
Defects under Control: Insights into the Missing Linker Sites and
Their Implication in the Reactivity of Zirconium-Based Frameworks.
Inorg. Chem. 2015, 54, 8396−8400; (c) Furukawa, H.; Gándara, F.;
Zhang, Y.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M.
Water Adsorption in Porous Metal−Organic Frameworks and Related
Materials. J. Am. Chem. Soc. 2014, 136, 4369–4381.
(20) Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen,
M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Disclosing the
Complex Structure of UiO-66 Metal Organic Framework: a Synergic
Combination of Experiment and Theory. Chem. Mater. 2011, 23,
1700–1718.
(11) DeStefano, M. R.; Islamoglu, T.; Garibay, S. J.; Hupp, J. T.;
(12) Xiao, W.; Dong, Q.; Wang, Y.; Li, Y.; Deng, S.; Zhang, N.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Time Modulation of Defects in UiO-66 and Application in Oxidative
Desulfurization. CrystEngComm 2018, 20, 5658–5662.
(13) (a) Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen,
P.; Yildirim T.; Zhou, W. Unusual and Highly Tunable Missing-
Linker Defects in Zirconium Metal−Organic Framework UiO-66 and
Their Important Effects on Gas Adsorption. J. Am. Chem. Soc. 2013,
1
35, 10525–10532; (b) Shearer, G. C.; Chavan, S.; Bordiga, S.;
Svelle, S.; Olsbye, U.; Lillerud, K. P. Defect Engineering: Tuning the
Porosity and Composition of the Metal−Organic Framework UiO-66
via Modulated Synthesis. Chem. Mater. 2016, 28, 3749−3761; (c)
Dissegna, S.; Vervoorts, P.; Hobday, C. L.; Düren, T.; Daisenberger,
D.; Smith, A. J.; Fischer, R. A.; Kieslich G. Tuning the Mechanical
Response of Metal−Organic Frameworks by Defect Engineering. J.
Am. Chem. Soc. 2018, 140, 11581−11584.
(14) Park, H.; Kim, S.; Jung, B.; Park, M. H.; Kim, Y.; Kim, M.
Defect Engineering into Metal−Organic Frameworks for the Rapid
and Sequential Installation of Functionalities. Inorg. Chem. 2018, 57,
2 2
Relevance of Protons in Heterolytic Activation of H O over Nb(V).
Insights from Model Studies on Nb-Substituted Polyoxometalates.
ACS Catal. 2018, 8, 9722–9737.
(22) Sheldon, R. A.; Kochi, J. K. Metal–Catalyzed Oxidations of
Organic Compounds. Academic Press: New York, 1981.
(23) Maksimchuk, N. V.; Kovalenko, K. A.; Arzumanov, S. S.;
Chesalov, Yu. A.; Melgunov, M. S.; Stepanov, A. G.; Fedin, V. P.;
Kholdeeva, O. A. Hybrid Polyoxotungstate/MIL-101 Materials:
1
040−1047.
(
Approach. ACS Appl. Mater. Interfaces 2017, 9, 34937−34943; (b)
Limvorapitux, R.; Chen, H.; Mendonca, M. L.; Liu, M.; Snurr, R. Q.;
Nguyen, S. B. T. Elucidating the Mechanism of the UiO-66-
Catalyzed Sulfide Oxidation: Activity and Selectivity Enhancements
through Changes in the Node Coordination Environment and Solvent.
Catal. Sci. Technol. 2019, 9, 327–335.
2 2
Synthesis, Characterization, and Catalysis of H O -Based Alkene
Epoxidation. Inorg. Chem. 2010, 49, 2920–2930.
(24) (a) Morandin, M.; Gavagnin, R.; Pinna, F.; Strukul, G.
Oxidation of Cyclohexene with Hydrogen Peroxide Using Zirconia–
Silica Mixed Oxides: Control of the Surface Hydrophilicity and
Influence on the Activity of the Catalyst and Hydrogen Peroxide
Efficiency. J. Catal. 2002, 212, 193–200; (b) Kholdeeva, O. A.;
Maksimovskaya, R. I. Titanium- and Zirconium-Monosubstituted
Polyoxometalates as Molecular Models for Studying Mechanisms of
Oxidation Catalysis. J. Mol. Catal. A: Chem. 2007, 262, 7–24.
(25) (a) Burch, R.; Ellis, P. R. An Investigation of Alternative
Catalytic Approaches for the Direct Synthesis of Hydrogen Peroxide
from Hydrogen and Oxygen. Appl. Catal. B: Environm. 2003, 42,
203–211; (b) Choudhary, V. R.; Samanta, C. Role of Chloride or
Bromide Anions and Protons for Promoting the Selective Oxidation
(16) (a) Fei, H.; Shin, J. W.; Meng, Y. S.; Adelhardt, M.; Sutter, J.;
Meyer, K.; Cohen, S. M. Reusable Oxidation Catalysis using Metal-
Monocatecholato Species in a Robust Metal–Organic Framework. J.
Am. Chem. Soc. 2014, 136, 4965–4973; (b) Nguyen, H. G. T.;
Schweitzer, N. M.; Chang, C.-Y.; Drake, T. L.; So, M. C.; Stair, P. C.;
Farha, O. K.; Hupp, J. T.; Nguyen S. B. T. Vanadium-Node-
Functionalized UiO-66: a Thermally Stable MOF Supported Catalyst
for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene. ACS
Catal. 2014, 4, 2496−2500; (c) Nguyen, H. G. T.; Mao, L.; Peters, A.
W.; Audu, C. O.; Brown, Z. J.; Farha, O. K.; Hupp, J. T.; Nguyen, S.
B. T. Comparative Study of Titanium-Functionalized UiO-66:
Support Effect on the Oxidation of Cyclohexene Using Hydrogen
Peroxide. Catal. Sci. Technol. 2015, 5, 4444–4451; (d) Noh, H.; Cui,
Y.; Peters, A. W.; Pahls, D. R.; Ortuño, M. A.; Vermeulen, N. A.;
Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha O. K. An
Exceptionally Stable Metal−Organic Framework Supported
Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation. J.
Am. Chem. Soc. 2016, 138, 14720−14726.
2 2 2 2
of H by O to H O over Supported Pd Catalysts. J. Catal. 2006, 238,
28–38; (c) Edwards, J. K.; Solsona, B.; Ntainjua, N. E.; Carley, A. F.;
Herzing, A. A.; Kiely, C. J.; Hutchings G. J. Switching off Hydrogen
Peroxide Hydrogenation in the Direct Synthesis Process. Science
2009, 323, 1037–1041.
(26) Shoudhary, V. R.; Sansare, S. D.; Gaikwad, A. G. Direct
2 2 2 2 2
oxidation of H to H O and decomposition of H O over oxidized
and reduced Pd-containing zeolite catalysts in acidic medium. Catal.
Lett. 2002, 84, 81–87.
(17) (a) Leus, K.; Concepcion, P.; Vandichel, M.; Meledina, M.;
(27) Kholdeeva, O. A.; Maksimov, G. M.; Maksimovskaya, R. I.;
Vanina, M. P.; Trubitsina, T. A.; Naumov, D. Yu.; Kolesov, B. A.;
Grirrane, A.; Esquivel, D.; Turner, S.; Poelman, D.; Waroquier, M.;
Van Speybroeck, V.; Van Tendeloo, G.; García H.; Van Der Voort, P.
Au@ UiO-66: a Base Free Oxidation Catalyst. RSC Adv. 2015, 5,
IV
Antonova, N. S.; Carbó, J. J.; Poblet J. M. Zr -Monosubstituted
Keggin-Type Dimeric Polyoxometalates: Synthesis, Characterization,
Catalysis of H O -Based Oxidations, and Theoretical Study. Inorg.
2 2
Chem. 2006, 45, 7224-7234.
2
2334–22342; (b) Wang, J.-C.; Hu, Y.-H.; Chen, G.-J.; Dong, Y.-B.
Cu(II)/Cu(0)@UiO-66-NH : Base Metal @ MOFs as Heterogeneous
2
Catalysts for Olefin Oxidation and Reduction. Chem. Commun. 2016,
52, 13116–13119; (c) Limvorapitux, R.; Chou, L.-Y.; Young, A. P.;
Tsung, C.-K.; Nguyen, S. B. T. Coupling Molecular and Nanoparticle
Catalysts on Single Metal–Organic Framework Microcrystals for the
(28) Jiménez-Lozano, P.; Ivanchikova, I. D.; Kholdeeva, O. A.;
Poblet J. M.; Carbó, J. J. Alkene Oxidation by Ti-Containing
Polyoxometalates. Unambiguous Characterization of the Role of the
Protonation State. Chem. Commun. 2012, 48, 9266–9268.
(29) Torbina, V. V.; Nedoseykina, N. S.; Ivanchikova, I. D.,
Kholdeeva, O. A.; Vodyankina O. V. Propylene Glycol Oxidation
with Hydrogen Peroxide over Zr-Containing Metal–Organic
Framework UiO-66. Catal. Today 2019, 333, 47–53.
Tandem Reaction of
H
2
O
2
Generation and Selective Alkene
Oxidation. ACS Catal. 2017, 7, 6691–6698.
5
ACS Paragon Plus Environment